AN EXPERT
GUIDE TOTHE
SPECTRUM

MIKE JAMES

An Expert Guide to the Spectrum

An Expert Guide
to the Spectrum

Mike James

GRANADA

London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Granada Publishing

Copyright © M. James 1984

British Library Cataloguing in Publication Data
James, M.

An expert guide to the Spectrum.

1. Sinclair ZX Spectrum (Computer)

I. Title

001.64'04 QA76

ISBN 0-246-12278-1

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham ,Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Becoming an Expert

The parts of a computer
Addresses, data and bit patterns
Bit patterns in hardware - the bus

Inside the Spectrum

The CPU

The Memory

BASIC access to memory - PEEK and POKE
The video display

The video output circuit
BASICI/O - INand OUT

The Spectrum’s built-in I/ O devices
The ULA as an output device

The ULA as an input device

The expansion connector

The system diagram

Inside ZX BASIC

The memory map

System variables

Using the RAM boundary variables
The keyboard state variables

The system state variables

The shifting memory

Conclusion

4 The Structure of ZX BASIC

The format of variables — a variable dump program

Contents

The numeric data formats

The dynamic management of variables
How ZX BASIC is stored

A keyword finder

A line renumber program

GOTO

GOSUB and the stack

The FOR loop

Conclusion

I/O - Channels and Streams

Streams - INPUT# and PRINT#
Channels - OPEN and CLOSE

The use of streams — device independence
The default streams

Other stream commands

Channels and streams — memory formats
Creating your own channels

Conclusion

6 The Video Display

Black and white to colour
The video memory

The display file map

The attribute file map

PEEKing the display file - POINT and SCREENS

Attribute codes and ATTR
The video driver

The character tables

The video system variables
Creative video

7 Video Applications

Functional characters
Changing the character set
Internal animation

Free characters

44
45
46
48
49
50
52
54
56
58
58
60
62
63
63
64
67
73
74
74
76
76
79
80
81
82
85
87
88
89
89
90
91
92

Contents vii

Variable size characters 94
Smooth screen scrolling 95
Conclusion 97
8 Tape, Sound and the Printer 98
The tape system 98
Tape hardware 99
Tape format 100
The SAVE and LOAD routines 103
Sound 105
The ZX Printer 108
9 Interface | and the Microdrives 111
ZX Microdrive BASIC - file specifiers 112
The extensions to the tape commands 113
The new Microdrive commands 114
The channel and stream commands 114
Reading and writing a file - buffering 115
Using PRINT#, INPUT# and INKEY$# 117
Advanced CAT 120
Advanced MOVEing - renaming and appending 120
CLEAR# and CLS# 121
The end-of-file problem 122
A prompting ERASE program 123
Date file handling - an example 124
Putting the Microdrives to work 126
10 Principles of Interface | and the Microdrives 127
The ROM paging 127
The Microdrive data format 128
The sector format 129
Microdrive maps 131
The Microdrive channel 132
Summary 134
A record/sector lister 134
Looking at the map 136

Ad hoc channels and non-PRINT files 136

viii

Contents

The new system variables
Using assembly language
A rewind command
Random access files

The continuing saga of Interface 1

11 Interface 1 and Communication

RS232 - almost a standard

The Spectrum’s RS232 interface
Handshaking and no handshaking
RS232 data format

The BASIC RS232 commands
Setting the baud rate

Using both tand b

Principles of RS232 operation
Assembler and the RS232 interface
A Spectrum VDU

The Sinclair Network

The BASIC net commands
Station 0 and broadcasting
Principles of operation

The network channel descriptor
The net from assembler

Service Spectrums

12 Advanced Programming Applications

Byte arrays

Passing parameters to USR functions
Bit manipulation - AND, OR and NOT
User-defined channels and Interface |
Adding commands to ZX BASIC

A stats program

Using Interface 2

Conclusion

Appendix: Further Reading

Index

137
138
140
141
142
143
143
144
145
146
147
149
150
150
152
153
155
155
157
157
159
160
160
162
162
163
166
170
173
177
185
186
187
189

Preface

The Sinclair Spectrum is a phenomenally successful micro-
computer, and deservedly so. It is always surprising to discover how
much it can achieve with so little programming effort. It can be
considered a revolutionary machine because it introduces new ways
of doing things. For example, ZX BASIC is a new and excellent
dialect of BASIC, and its video display uses parallel attributes for
colour control. The advent of Interface 1 and the Microdrives has
resulted in even greater versatility and power.

Lots of microcomputer users must have been wondering what
exactly makes the Spectrum such a success, and this book sets out to
explore a variety of reasons and enable Spectrum users to put all its
remarkable features to good use. The book is therefore about both
the Spectrum’s hardware and its software, and the vital interaction
between them.

After an introductory chapter which discusses general aspects of
computer technology, the next three chapters examine the standard
16K or 48K Spectrum, exploring it both in terms of the chips that
make it up and ZX BASIC. Chapter 5 describes the sophisticated
I/0 system hidden within the standard Spectrum, a system based on
streams and channels. The video display is obviously an important
part of any application, and two chapters are devoted to describing
how it works, and giving examples of how this knowledge can be put
to good use. The Spectrum’s standard peripherals — the tape system,
the sound generator and the ZX printer - form the subject matter of
Chapter 8 while Chapters 9 and 10 are devoted to Interface 1 and the
Microdrives. Chapter 11 introduces the RS232 interface and the
Sinclair Network, showing the Spectrum’s communication poten-
tial. The final chapter is a collection of applications examples to
indicate the sort of advanced projects you can tackle for yourself.

This book assumes a working knowledge of BASIC at an
introductory level, and builds on this foundation. Although it is

x Preface

outside the scope of the book to teach assembly language, it
includes many examples of applications where assembly language is
a great advantage, and in these cases appropriate machine code
routines are presented and incorporated into BASIC programs. If
you’ve learnt assembly language programming and are wondering
what to do with it, these examples will give you plenty of ideas. If, on
the other hand, you’ve not yet picked up this knowledge, you can use
the routines in any case - though they may well persuade you of the
advantages assembler can offer, and provide a siimulating
introduction.

You'll find that this book contains a lot of material - probably
more than can be absorbed in one go. Don’t worry if there are parts
of it you don’t understand first time round. Like lots of technical
subjects, computing cannot be grasped simply by reading about it.
You have to experiment and try things out for yourself before you
really come to terms with it. Don’t be frightened to explore ideas of
your own - this book aims to give you some leads and pointers, but
they can only be the tip of the iceberg.

Lots of the ideas in the book are interdependent - you will find
that as you are introduced to new ideas in later chapters, you will
gain a deeper understanding of material presented earlier. Because
of this, you can’t expect to start reading this book at page one and
carry on reading through to the end of the final chapter, having
assimilated every word. Instead, I hope you will find yourself
turning back to re-read sections as they begin to make more sense in
the light of new information. Equally, I hope you find that this is a
book that will last, in the sense that it contains enough interesting
material to keep you busy in lots of areas for a long time. Above all,
hope I manage to indicate why the Spectrum is such an exciting
micro, and how to go about making the most of its enormous
potential.

My grateful thanks are due to Richard Miles and Sue Moore of
Granada Publishing for all their hard work and help in the
preparation of this book.

Mike James

Chapter One
Becoming an Expert

To be an expert on any computer it is necessary to know something
about its software and something about its hardware. In fact the
division between software and hardware is not clear cut. You cannot
specialise in one without the other getting in the way! When using
personal computers like the Spectrum most of the really exciting
things happen when software takes advantage of the hardware in
new ways. Fortunately this doesn’t mean that every programmer has
to become a hardware engineer! Electronics can be a difficult and
time-consuming subject; but in computer programming what really
matters is an understanding of how the hardware affects what can be
achieved through software. Much of this book is concerned with
explaining the Spectrum’s hardware from the point of view of a
creative programmer. This chapter presents an overview of
computer hardware in general. Chapter 2 describes how this applies
to the Spectrum in particular. Much of the material in these first two
chapters is used and developed further in the later chapters dealing
with more specific topics.

If all this talk of hardware is making you afraid that the software
side of things is going to be neglected, then Chapters 3, 4 and 5,
which look at the inner workings of ZX BASIC, will reassure you
that software really is as important as hardware. Later chapters
describe the workings of some of the standard Sinclair peripherals
for the Spectrum - the cassette system, the ZX Printer, Interfaces 1
and 2 and the Microdrive - and explain their use in such applications
as program storage and networking.

All you need to understand the material in this book is a
knowledge of ZX BASIC. If you are a BASIC beginner then I
recommend you look first at an indroductory book on the subject
such as The Spectrum Programmer by S. M. Gee, published by
Granada. Although BASIC will normally be used to illustrate the
ideas described, it is not always possible to achieve the speed needed

2 An Expert Guide to the Spectrum

using nothing but BASIC. When this is the case there is really no
choice but to use Z80 assembler. While this book doesn’t dealin any
depth with Z80 assembler, avoiding its use altogether would
prohibit too many interesting subjects. The solution adopted s,
where necessary, to give Z80 assembly language programs that can
be used within BASIC programs as USR functions. What such USR
functions do, and the general way that they do it, will be described,
but the actual detailed code will not. If you understand Z80
assembly language then the program listings, complete with their
comments, will be enough for you to know how the programs work.
If you do not understand it then you will have only a general
appreciation of what the programs are doing, but you will still be
able to use them from BASIC. In other words, while you will be able
to follow the algorithms involved, you won’t necessarily understand
the details of the code.

It is helpful to realise that although many computer books do
contain a logical progression of ideas from Chapter | to the end, this
doesn’t mean that you have to read and fully understand each
chapter before moving on to the next. There is an old saying that the
best way to read a computer manual is to read it once forwards, then
once backwards, and then make your first attempt to understand it!
There is more than a little wisdom in this suggestion, and the
backwards and forwards approach often pays dividends: infor-
mation given later will improve your understanding of what has
already been described. It is worth keeping this idea in mind while
you read this book. If you find that you are not sure that you
understand something, resist the temptation to backtrack. Read on
to the end of the section. It is surprising how often small details fit
into place when you have managed to get an overview of the
situation. Don’t expect to understand all of An Expert Guide to the
Spectrum at first reading. Some of the material will only be useful to
you when you actually put itinto practice, and only then will it really
make sense to you. In this respect the Expert Guide is also a
reference book for the future.

The parts of a computer

All computers have certain features in common. In particular they
all have a CPU (Central Processing Unit) that is responsible for
carrying out the instructions within your program. They all have
some kind of memory to hold your program and data, and they all

Becoming an Expert 3

have some kind of input/output (I/0O) device to allow you to
communicate with your program (see Fig. 1.1). This simple picture
is complicated by the fact that there are a number of different types of
computer memory and a very wide range of possible I/ O devices.

CPU

Input/
Memory Output
devices

Fig. 1.1. The parts of a computer.

Memory can be divided into two types, primary and secondary or
backing store. Primary memory is used to store programs that the
CPU is carrying out and data that it is actually processing.
Secondary memory, such as tape storage, is used to store the
machine’s ‘library’ of programs and data. Primary memory is
further sub-divided into Random Access Memory (RAM)and Read
Only Memory (ROM). The difference between RAM and ROM is
that the information stored in RAM can be changed, but the
contents of ROM are fixed at the time of manufacture. RAM is
badly named: ‘Random Access Memory' conveys little of the
essential difference between RAM and ROM. As RAM can be both
read and written to, it might be better to call it ‘Read And Write
Memory’ in contrast to ‘Read Only Memory’.

Any computer will contain a certain amount of RAM, used to
store user programs, and a certain amount of ROM, containing any
fixed information that the machine needs to run your programs. In
the case of the Spectrum, and most other microcomputers, the
ROM is used to hold the rules for the BASIC language - in other
words the BASIC interpreter. Before going on to examine the
Spectrum’s hardware it is worth looking briefly at the way
informatipn is stored in memory.

Addresses, data and bit patterns

From the point of view of the CPU, memory looks like a collection

4 An Expert Guide to the Spectrum

of numbered locations, each one capable of holding some data. The
number that identifies each memory location is called its address
(see Fig. 1.2). The data that can be stored in a memory location takes
the form of a bit pattern. As a bit is either a one or a zero, a bit

Address
t

Data

4
3 | Data

- -
2| Data » Datain/out

1| Data

—_—2 0| Data

Address Memory
selects amemory locations
location

Fig. 1.2. Use of an address to find data in a memory location.
pattern is exactly what its name suggests — a pattern of ones and
zeros. For example, 01010 is a bit pattern. Most micros, the
Spectrum included, have memories that can store a pattern
composed of eight bits in each memory location. This size of bit
pattern is so common that it is given a special (and well-known)
name - a byre. A bit pattern can be used to represent the more
familiar forms of data that are encountered in BASIC, but it is
important to realise that a bit pattern is all that a memory location
can store.

Binary numbers are the best-known use of bit patterns to
represent data, so it is useful to go over the details of this
representation. The eight bits stored in a memory location are
usually labelled b0 (bit zero) to b7 (bit seven) as shown below:

b7 b6 b5 b4 b3 b2 bl b0

Each bit in the bit pattern that represents a binary number is
associated with a value:

b7 b6 b5 b4 b3 b2 bl b0
128 64 32 16 8 4 2 |

If you look at these values carefully you will see that starting from
the 1 associated with b0 each value increases by a factor of two for
each position that you move to the left. Another way of looking at
this is that each value is equal to 2tn where ! means ‘raise to the

Becoming an Expert 5

power’ and n is the bit number. To convert a binary number to the
more familiar decimal notation all you have to do is add up the
values associated with each 1 in the bit pattern. For example:

b7 b6 b5 b4 b3 b2 bl b0
0 Qule@ - 1 0wilag

is 32+8+2 or 42 in decimal.
If you want to convert a binary number to decimal the easiest way
is to use the Spectrum’s BIN function. Type:

PRINT BIN x

where x is the binary number for which you want to know the
decimal equivalent. The Spectrum will obligingly convert and print
it for you. Remember you can always use the computer to avoid the
difficult arithmetic that so often puts people off simple subjects such
as binary numbers! It is more important that you understand the
idea of using a bit pattern to represent a number rather than be able
to perform miracles of mental arithmetic in converting from binary
to decimal! Unfortunately, the Spectrum doesn’t have a function
that will convert a number in decimal form into binary, but such a
conversion isn’t often needed. For the few occasions when it is, the
following subroutine will accept a decimal number in D and return
the bit pattern that represents it as a binary number in the string BS.

1000 LET Eg$="v

1010 LET E=D-INT(D/2)x2

1020 IF BE=0 THEN LET B$="0"+B$
1030 IF B=1 THEN LET E$="1"+p$
1040 LET D=INT(D/2)

1050 IF D=0 THEN RETURN

1060 GOTO 1010

High level languages such as BASIC go to a lot of trouble to hide
the fact that memory can only store bit patterns from the user.
However, the data types you find in BASIC - numbers, strings and
arrays - are created out of this more fundamental data type. Once
you know something about bit patterns and binary numbers it
becomes much easier to understand how and why computers work.
For example, each memory location can only hold eight bits. This
means the smallest binary number that can be stored is 00000000, or
zero, and the largest is 11111111 or, if you convert this to decimal,
255.

As already mentioned, the memory location when data is stored

6 An Expert Guide to the Spectrum

or retrieved is specified by a number called an address. This, too, has
a close connection with bit patterns and binary numbers. From the
point of view of computer hardware, the most important feature of a
bit pattern is that each bit needs only two states to represent it.
Normally these two states are written as zero and one, but there is
nothing to stop us from renaming them ‘off’ and ‘on’ without
altering anything that matters. Computer hardware uses two voltage
states, low and high, to represent the bits that make up a bit pattern.
For example, the eight bits in a single memory location are stored as
a pattern of low and high voltage states. In the same way, the
number that is used to select a single memory location - i.e. the
address - can also be represented by a bit pattern of low and high
voltage states. Most micros, including the Spectrum, use 16 bits to
specify the address of the memory location in use. The lowest 16-bit
binary number is 0 and the largest is 65535. This determines the
maximum amount of memory that can be handled, which doubles
each time a bit is added to the address:

1 bit address can handle 2 memory locations
2 bit address can handle 4 memory locations
3 bit address can handle 8 memory locations

and so on. It is therefore easier to measure memory sizes in a way
that takes this into account. Instead of using 1000 memory locations as
the basic unit of memory size, it is more convenient to use 1024 or
1Kbyte. Using a 10-bit address you can handle a maximum of
exactly 1024 memory locations or 1K of memory. Thus usingan 11-
bit address you can handle a maximum of 2K of memory, usinga 12-
bit address you can handle a maximum of 4K, and so onup to a 16-
bit address which will handle 64K of memory. If the basic unit of
memory was 1000 memory locations then the numbers associated
with each address size would be very messy.

Bit patterns in hardware - the bus

Bit patterns and binary numbers are very much part of the software
side of a machine. However, they do correspond to something that is
very much part of a machine’s hardware — the bus. In the last section
we saw how a bit is represented in hardware by two different voltage
states — low and high. Clearly a group of bits — a bit pattern - will
need a pattern of voltages to represent it in hardware. A busisjusta
group of wires used to convey a bit pattern, in the form of voltage

Becoming an Expert 7

levels, from one part of the computer to another. Each wire in the
bus carries the state of one bit. For example, the CPU generates
addresses which are conveyed to the memory by the address bus. If
the CPU uses 16-bit addresses then the address bus is composed of
16 wires, each carrying the state of one bit in the address. In a real
computer system the address bus leaves the CPU and is connected to
all of the parts, memory and I/ O devices, that need to be informed of
the current address that the CPU is using.

In the same way, data is passed around the computer by way of a
data bus that connects all data-receiving and data-transmitting parts
of the computer. If the CPU and the memory work with eight-bit
data, then the data bus will consist of eight wires. Notice that the
data bus is different from the address bus in that it can carry bit
patterns to and from the CPU. The address bus and the data bus
connect up all the parts of a computer to make it a single machine.

As well as these two fundamental hardware buses there is usually
a small group of wires that connect the CPU to the rest of the
machine - the control bus. The control bus carries a bit pattern that
synchronises the workings of the whole machine and passes
information about what different parts of the machine are doing.
For example, the control bus usually includes a wire that signals
whether or not the CPU is reading data in. From the software point
of view, very few of the signals carried by the control bus are likely to
be of any use.

After this discussion of computers in general it is time to turn our
attention to the Sinclair Spectrum, and to discover what makes it
special.

Chapter Two
Inside the Spectrum

The Spectrum is a very special computer. Most of its hardware is
incorporated in a single purpose-built chip called a ULA, standing
for Uncommitted Logic Array. This single fact is responsible for the
Spectrum’s high performance and low price. However, the way that
the ULA is designed makes it difficult to alter the way that the
machine works, and in this sense the Spectrum is a ‘single-mode’
machine. For this reason there is little point in examining the
Spectrum’s hardware in detail, for instance with a complete circuit
diagram. A circuit diagram isn’t even very useful if you are trying to
repair a Spectrum, because the number of components is very low,
and one of the largest - the ULA - is available only from Sinclair!
However, it is worth gaining a general idea of the overall functioning
of the Spectrum, and a detailed knowledge of one or two important
‘external’ connections such as the loudspeaker and tape circuits.
After all, detailed hardware knowledge is only of use if it helps you
to alter the way that software behaves, or if it can be used to change
or add to the workings of the Spectrum.

The CPU

The CPU used by the Spectrum is the very popular Z80A
microprocessor. The only difference between the standard Z80 chip
and the Z80A is that the Z8BOA can work twice as fast as the Z80. The
working speed of a microprocessor is governed by the maximum
clock frequency it can accept. The clock is simply a regular pulse that
the microprocessor uses to synchronise all the different operations
necessary to obey an instruction. The number of clock pulses needed
to carry out each instruction depends on the complexity of the
instruction. In theory, the Z8OA can work with a clock upto4MHz,
giving a single clock pulse time of !, of a millionth of a second! In

Inside the Spectrum 9

practice the Spectrum uses a clock of 3.5M Hz which is not quite as
fast as it could be.

The Z80 is a fairly ordinary microprocessor. As it processes data
eight bits at a time it is called aneight-bit processor. It has 16 address
lines which give it a maximum addressing range of 64K, all of which
is used in the case of the Spectrum. One important feature of the Z80
is that it has an additional 64K of address space that is dedicated to
I/O devices. This is achieved by adding what amounts to an extra
address bit called IORQ (Input Output ReQuest) which will select
between 64K of memory and 64K of I/ O devices. This sounds like a
powerful facility, and indeed it is, but there is a limitation. All the
instructions that the Z80 can obey will work on any memory
location, but the 64K of I/ O devices have their own specialand very
restricted set of instructions. These essentially amount to reading
data in and writing data out to whatever I /O devices are present. (See
IN and OUT later in this chapter.)

You may find it puzzling to talk of I/ O devices in the same way as
memory locations, but this is exactly what I/ O devices look like as
far as the computer is concerned. An I/O device sends data to and
receives data from the computer in exactly the same way as a
memory location. The main difference is that any given I/ O device
might correspond to a number of 1/O locations or ‘ports’. For
example, the ZX printer is an 1/O device. It uses a single port at
address 251 to receive the data that determines what it prints, and to
send data back to the Spectrum to indicate what ‘state’ it is in. The
Microdrives and Interface 1 use three I/ O ports at 254, 247 and 239
to communicate with the Spectrum. The use of 1/O ports and 1/0O
instructions will be discussed in more detail, with practical
examples, in later chapters.

The most important feature of the Z80 as far as the programmer is
concerned is that it determines the machine code and assembly
language that the Spectrum uses. It is not the purpose of this book to
teach Z80 machine code but, as already mentioned, it will be used
where there is no other way to achieve the processing speed
necessary, for a demonstration. If you would like to learn Z80
machine code or assembly language then there are suggestions for
further reading at the end of this book.

The memory

The Spectrum’s memory addressing space is divided up into two

10 An Expert Guide to the Spectrum

parts, as can be seen in Fig. 2.1. The I6K ROM is used to hold all the
machine code necessary to implement the rules of ZX BASIC, and
subroutines to handle the Spectrum’s standard hardware. For
instance, there is a subroutine that will read the keyboard, and

65535
-
32K RAM
Expansion
48K
RAM
————— — 32768
Fixed 16K
- RAM
16384
16K 16K
ROM BASIC ROM
00

Fig. 2.1. The structure of the Spectrum’s memory addressing space.

another that will make a sound using the loudspeaker. This ROM is
implemented as a single 16Kbyte chip. If you are feeling
adventurous, and have the necessary programming hardware, you
can replace this ROM with a 2718 EPROM containing your own
machine code program. EPROM stands for Erasable Program-
mable Read Only Memory, and is simply a type of ROM in which it
is possible to store a program using fairly cheap equipment. An
EPROM can be wiped clean by exposing it (for some minutes) to
ultraviolet light, and is therefore reusable. However, you would
have to copy many of the subroutines to handle the hardware - such
as the keyboard and the video display - into your new EPROM; and
writing 16K of machine code is not something to be tackled lightly.

The Spectrum’s RAM is split into two sections. The first 16K is
always present, and is used to store the information that generates
the video display as well as a lot of system information and user
programs. The final 32K is optional, and is added to the basic 16K
Spectrum to bring it up to the maximum 48K of RAM. Both
sections are implemented using dynamic RAM chips. The 16K
section uses eight standard 4116 16K bit chips and the 32K section
uses eight 4532 32K bit chips. The 4532s are rather special. They are
only available from Texas instruments, and are ‘failed’ 64K chips. It
is difficult to make memory chips that can store as much as 64K bits,
and to save throwing away large quantities of chips with only a few

Inside the Spectrum 11

faults Texas Instruments designed their 64K bit chip to work as
separate 32K halves. If the faults all lie in one half of the chip then it
certainly cannot be used as a 64K bit chip, but there is no reason why
it cannot be used as a 32K bit chip - and this is what a4532 is. If you
have a 16K Spectrum and want to upgrade it to 48K then my advice
is to buy a complete upgrade kit from one of the many suppliers: the
Texas chips are fairly difficult to get hold of. Early Spectrums (Issue
1) cannot be upgraded simply by adding missing chips, because an
extra printed circuit board has to be used. You can tell an Issue 1
Spectrum by removing the bottom of the case and looking at the
printed circuit board to the right of the two jack sockets (EAR and
MIC). There you will see the words ‘ISSUE ONE’. AnIssue 2 board
is marked ‘ISSUE TWO’ on the front edge of the printed circuit
board, just right of centre. (Later issue numbers will also be shown
just right of the centre of the circuit board.) Upgrading an Issue 2
Spectrum is just a matter of soldering in twelve chips the right way
round and making one wire link.

You may be wondering what the word ‘dynamic’ means when
applied to RAMs. The answer is that there are two different ways of
implementing RAM - static and dynamic. Static RAM will hold the
data that is stored in it until it is changed or until the power is
switched off. In this sense it is simple to use, reliable, and easy to test.
The trouble is that manufacturers haven’t been able to make static
RAM chips with very large capacities. Dynamic RAM, on the other
hand, is available in sizes up to 64K bits per chip, for very reasonable
prices. Its disadvantage is that information stored in it fades away
unless it is read and rewritten every now and again. This reading and
re-writing of information is known as ‘refreshing’ dynamic RAM,
and in practice special circuitry is supplied to carry it out in a way
that the user will not notice. In the Spectrum’s case, refreshing is
carried out by the Z80 and the UL A working together, and the whole
of the 48K is refreshed without loss of performance or any trouble
on the user’s part.

BASIC access to memory - PEEK and POKE

ZX BASIC provides two direct ways of examining and altering
memory locations. The command

PEEK (address)

will return the contents of the memory located at ‘address’. As

12 An Expert Guide to the Spectrum

‘address’ must be a 16-bit binary number (see Chapter 1) it must lie
in the range 0 to 65535. Similarly, as the data stored in the memory is
a bit pattern consisting of eight bits, the value returned (as a binary
number) by PEEK has to lie in the range 0 to 255. The command

POKE address, data

will store the bit pattern corresponding to the binary representation
of ‘data’ in the memory located at ‘address’. Once again, ‘address’
should be in the range 0 to 65535, and ‘data’ should be in the range 0
to 255.

Notice that although both PEEK and POKE work in terms of
decimal numbers it is very often the underlying bit pattern that is of
interest. For example, when defining new characters (see Chapter 6)
each pixelis represented by a single bit which is 1 for an ink pixel and
0 for a paper pixel. To POKE a bit pattern representing ink/ paper
pixels it would be necessary to treat the bit pattern as a binary
number, then convert this binary number to decimal. Fortunately,
ZX BASIC includes the BIN command which makes the conversion
to decimal unnecessary. If you want to POKE a bit pattern into a
memory location then you can use:

POKE address,BIN x

where x is the bit pattern. However, this method fails if x is a
variable (BIN will not work with variables) and PEEK always
returns a decimal value. For this reason, later chapters will
introduce methods of using BASIC to manipulate decimal values as
if they were bit patterns.

The video display

The Spectrum’s video display uses a very ingenious system of
parallel attributes to obtain an eight-colour display (with some
restrictions) in not much more memory than would be used for a
black and white display. Nearly all the work involved in generating
the display is the responsibility of the ULA chip. Itis something of a
disappointment that the ULA chip is not programmable to produce
different display modes. From the moment that the Spectrum is
switched on, the ULA displays the information stored in a fixed area
of memory - the video RAM - to produce a fixed format (256 dots
by 192 dots) colour display. This single display mode of operation

Inside the Spectrum 13

offers little scope for experiment. However, 256 by 200 dots in
colour is a more than adequate display resolution.

The only really useful aspect of the video display’s hardware is the
way that the video RAM determines what is displayed on the screen:
this is the subject of Chapter 6. However, it helps to have a complete
picture of the way things work, so the general principles behind the
generation of the video display will be explained here.

The video RAM is always the first 6912 bytes in the lower 16K of
RAM. While a TV picture is being displayed this area of RAM is
accessed by the ULA, and the information it contains is used to
determine the colour of each dot or pixel (picture element) on the
screen. A TV picture (in the UK at least) iscomposed of 625 scan lines
displayed every fiftieth of a second. To produce a stable picture, the
ULA must not only generate the synchronising signals that mark the
beginning of every line and every frame, it must also retrieve data
from the video RAM fast enough to determine the colour of each
pixel in the scan. It must also retrieve each item of data just before
the pixels that are controlled by it are displayed in the scan. In other
words, to produce a stable picture the ULA must be able to access
the video RAM atany time that it needs to. The only major difficulty
with this is that the CPU also has to have access to the vidleo RAM
occasionally. Otherwise how would the data that controls the
display ever be changed? This means that the video RAM’s data and
address bus have to be shared by the ULA, which generates the
display, and the CPU, which manipulates it (see Fig. 2.2). Of course,
only one of the two can actually be using the video memory at any
one moment. If both want to use the memory then some sort of
priority has to be established to decide which one has to wait. As the
ULA is generating the video display, making it wait for the CPU to
use the video RAM would result in gaps (white speckles) in the
display. (This is what happens in some other machines.) It is better
to make the CPU wait until the ULA is finished with the video
RAM, and this is what the Spectrum does. However, there is a
hidden problem with this scheme. The ULA and the CPU have to
share the data and address buses to access the video RAM. If the
CPU is not allowed to use the video RAM while the ULA is using it,
it is equally not allowed to use any other RAM or ROM in the
sytem, because the address and data buses are also in use by the
ULA. If this limitation was accepted, the resulting machine would run
very slowly indeed. Every memory access made by the CPU would have
to wait until the ULA wasn’t using the memory. The solution adopted
for the Spectrum is to provide separate CPU and ULA data and

14 An Expert Guide to the Spectrum

Address bus
Z80
CPU N/
K| s
Video
3 RAM
| I
-~
_ /\ TR e
Video out l
ULA j
Data bus

ULA
Fig. 2.2. Shared connections between the video RAM, the ULA and the CPU.

address buses. This means the ULA can use the 16K of RAM that
contains the video RAM while the CPU can simultaneously use any
other memory apart from this 16K. This can be seen in Fig. 2.3,
where the ULA can be seen to have a direct connection to the 16K of
RAM that contains the video RAM, while the CPU has a direct
connection to the rest of the memory. If the CPU wants to use the
ULA’s 16K thisis detected by the ULA, which stops the CPU’s clock
until it is ready to allow the CPU access to its address and data bus.
This causes a slight delay in the CPU’s operation when using the
lower 16K of memory. It is not usually noticeable when you are
running a slow language like BASIC, but it can cause machine code
programs stored in the lower 16K to run at different rates. This is
only a real problem if timing is critical, or if timing loops are
included in the program.

Although it is of little practical use, it is interesting to notice that
the Spectrum does not use expensive multiplexing chips to control
access to the video RAM’s bus. Instead it uses the simplest of all
electronic components - the resistor. When the CPU is not trying to
use the low 16K of RAM, the two buses work independently, with
the signals on one bus appearing at a much reduced level on the
other because of the voltage ‘dropping’ action of the resistors. The
voltage reduction is such that on each bus the signals of the other
appear as ‘noise’ and do not influence what happens. However,

Inside the Spectrum 15

16K
ROM
| |
X
VAN
Data 1
CET
280 i\
CPU N/
|
] 32K
Address 1 RAM
CPU (optional)
clock a
VN M
A
Impedance barrier
] Data 2
= S| ES 16K
Video out Video
ULA - Address 2 RAM
> -

Fig. 2.3. Connections between the main memory areas, the CPU, and the
ULA, showing how access to the video RAM is shared.

when the ULA allows the CPU to access its part of the address and
data buses it stops ‘driving’ the buses. The voltage reduction
produced by the resistors is now much less, so the CPU’s signals gain
control. This is a remarkably clever, simple and cheap solution to a
very common problem in hardware design, and is typical of
Sinclair’s ingenious engineering.

The video output circuit

The ULA is responsible for taking the data from the video RAM and
using it to construct the colour information as three video signals.
However, the task of taking these three colour signals and producing
a single PAL (UK standard) colour video signal is the responsibility

16 An Expert Guide to the Spectrum

of an LM1889N PAL encoder chip. The three signals produced by
the ULA are:

Y = luminance and synchronisation signals
U = blue-green signal
V = red-yellow signal

This use of colour difference signals is a problem to anyone wanting
to use a video monitor that has only an RGB (Red, Green, Blue)
input, but it does simplify the Spectrum’s video circuits. The PAL
encoder takes the U and V signals and generates a colour or chroma
signal that is mixed with the Y signal by a two-transistor mixer to
produce the final PAL video signal, which is fed to the UHF
modulator.

You can adjust the colour and quality of the display using the
variable capacitor and resistors positioned in a line on the left-hand
side of the printed circuit board (see Fig. 2.4). Adjusting TClI

UHF socket
[1

UHF
Modulator

(©) TC1 (video clock)
(©) T1c2/(CPU clock)
@ VR1 (colour balance 1)
(5) VR2 (colour balance 2)

Fig. 2.4. Video output adjustments.

carefully might improve the sharpness of the image by removing any
interference patterns. VR1 and VR2 adjust the relative colour
balance of the display. VR alters the red-yellow balance and VR2
alters the blue-yellow balance. In practice it is better to adjust the
colour balance of the TV set that the Spectrum is driving, ratherthan
‘fiddling’ with VR | and VR2. TC2 adjusts the frequency of the
clock pulses to the CPU and should not be altered. The U, V, Y and
the composite colour video signals are all available at the rear edge
connector which is described later. With a little effort these signals
can be used to drive a standard RGB colour monitor, or a black and

Inside the Spectrum 17

white or colour monitor that accepts a composite video signal. This
is discussed further after the section on the signals available at the
edge connector.

BASIC1/0 -INand OUT

The Z80 provides an additional 64K of address space for 1/O
devices. However, both data and I/ O addresses are carried by the
standard data and address buses that connect the CPU to the rest of
the computer. As already described, memory and I/ O addresses are
distinguished by the state of a line in the control bus called IORQ
(I/O ReQuest). ZX BASIC provides two additonal commands to
access I/O devices, in the same way that it provides PEEK and
POKE to allow direct access to memory. The command

IN address

returns a data value from the device located at I/ O ‘address’. The
command

OUT address, data

will send the value ‘data’ to the device located at I/ O ‘address’. The
main difference between PEEK/POKE and IN/OUT is that all
memory locations behave in roughly the same way, but the device
located at ‘address’ can behave in a wide variety of ways depending
on its type. Notice also that no storage of data is implied byan QOUT
command. For example, if a special printer interface was
constructed to connect a non-standard printer to the Spectrum, then
it might be configured to accept data from, say, I/ O address 56. To
do this it would have to monitor the address lines and IORQ for the
occurrence of the bit pattern corresponding to I/O address 56.
When this was detected, it would read in the data currently on the
data bus and pass this on to the printer to interpret as a character
code. So in this case OUT 56, CODE (“A”) would send the ASCII
code for A to the printer, but IN 56 would be totally ignored by the
printer interface and so wouldn’t return any useful data. Some 1/ O
addresses correspond to I/O ports that only accept data such as
printer interfaces. In this case it only makes sense to use OUT. Some
I/0 addresses correspond to I/ O ports that willonlysupply data, and
in this case it only makes sense to use IN. However, some I/O
addresses correspond to 1/ O ports that can both accept and supply
data. A cassette interface, for example, can both read and write data.

18 An Expert Guide to the Spectrum

In short, to use IN and OUT properly you have to know not only the
address that a device occupies but quite a lot about how it functions.

The Spectrum’s built-in 1/0 devices

The Spectrum’s built-in I/O devices are the loudspeaker, the
cassette interface and the keyboard. All of these are controlled by
the ULA. Indeed, the loudspeaker and cassette interface are both
handled by a single ULA connection, and in this sense they are a
single I/ O device!

As already mentioned the Z80 has a separate 64K of addresses
that can be used to select I/ O devices. However, instead of assigning
each I/O device its own address (or group of addresses) the
Spectrum assigns each device to a particular bit in the address. For
example, the first bit, b0, selects the internal I/ O devices connected
to the ULA. The action of this bit is such that when it is zero the
ULA is selected. Thus any I/O address that has b0 set to zero will
select the ULA. In the same way b2 selects the ZX printer when it is
zero. If you carry on assigning address bits to devices you should be
able to see that the maximum number of devices that can be handled
is 16. In fact the Spectrum only uses b0 to b4 of the address to select
one of six devices according to the following table.

b0 ULA keyboard/loudspeaker/cassette interface
bl not used

b2 ZX Printer

b3 Microdrives and Interface |

b4 Microdrives and Interface |

However, this only leaves b5, b6 and b7 for special uses: bits b8 to
bl5 are used to select which column of the keys that make up the
keyboard is being read (see later). It is clear that things would be
very confused if more than one I/ O device were selected at a time, so
valid I/ O addresses can only have one of b0 to b7 set to zero.

As the ULA is selected by a single bit in the address it might seem
impossible for it to handle so many different I/ O devices. In fact the
ULA behaves differently depending on whether it is being read
(using IN) or written (using OUT).

Inside the Spectrum 19
The ULA as an output device

When the ULA is sent data as an output device it controls the
loudspeaker and the cassette output connection, MIC. Although it
isn’t strictly anything to do with I/ O, the colour of the TV display’s
border is also controlled by the ULA, acting as an output
device.Each of these internal output devices is controlled by the bit
pattern of the data sent to the ULA according to the following plan:

b7 b6 bS b4 b3 b2 bl b0
¥ * * L/S MIC (colour)

where * means that the bitisn’t used. So theloudspeakeriscontrolled
by b4, the MIC by b3, and the colour of the border by the binary
number represented by the three bits b2 to b0. To be able to use this
information, all we have to know is the I/O address to use for
sending data to the ULA. As the ULA is selected when b0 is zero and
bl to b7 are one, we only have to determine the values of b8 to bl15.
As noted earlier, address lines b8 to blS are used to scan the
keyboard; so for output they might as well be set to zero. This gives
the following bit pattern for the ULA’s output address:

bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0
6 0 0 0 0 O OO0 1 1 1 1111 0

or 254 in decimal.
As an example of using the ULA as an output device, try the
following program:

10 INPUT E
20 QUT 254,B
30 GOTO 10
If you type in numbers in the range 0 to 7, you will see the colour of
the border change. Although you can affect the loudspeakerand the
MIC output using the same technique, BASIC is so slow that the
best you can achieve is a low-pitched buzz. For example:

10 OUT 254,16
20 0UT 254,10
30 GOTO 10

Line 10 sends the bit pattern 00010000 to the ULA and line 20 sends
00000000. You should be able to see that as this program is in the
form of a loop, the result is that b4, which controls the loudspeaker,
is continually changing between 0 and 1. This produces a low-

20 An Expert Guide to the Spectrum

pitched buzz from the loudspeaker. The use of I/O port 254 to
control the loudspeaker is described in more detail in Chapter 8. As
the loudspeaker and the tape recorder MIC socket are both driven
by the same pin on the ULA, the signal to the loudspeaker is also
present on the MIC socket. This means that if you record while the
rather quiet loudspeaker is making sounds you can replay the tape
later and reproduce the sounds at a rather louder volume. Similarly,
if you connect an amplifier with a speaker to the M1C socket you can
boost the Spectrum’s sound to any level that you require. In other
words, MIC is not only a ‘tape out’ connection; it is a ‘sound out’
connection as well.

The ULA as an input device

When the ULA is used as an input device it sends data to the CPU
concerning the state of the EAR input and the keyboard. The
keyboard is the most complicated input device, so it will be
described first.

Figure 2.5 is a schematic diagram of the Spectrum’s keyboard.
You can see it takes the form of a rectangular matrix of connections.
Each key on the keyboard is arranged so that pressing it connects
one of the horizontal wires to one of the vertical wires. Obviously, to
identify which key, if any, has been pressed you have to find out
which horizontal and vertical wires have been connected. The eight
horizontal wires are connected to b8 to bl5 of the address bus, so
they can be set to different voltage levels according to the bit pattern
of the address in use. The five vertical wires are connected to five
input pins on the ULA, and when the ULA is used as an input device
it is their state that is sent to the CPU as b0 to b4 of the data. In other
words, IN 254 ‘reads the state’ of the five vertical keyboard lines, and
returns the decimal equivalent of b0 to b4. As the vertical input lines
are connected to +5 volts (high) they return a value of 1 when no key
is pressed. At the instant when the input lines are read by IN 254 the
address on the address bus (i.e, 254) is such that all of b8 to b15 are 0,
i.e. low voltage. If a single key is pressed then the vertical line that it
connects to the address line will be connected to a low voltage and so
will return a 0 in the bit pattern. That is, IN 254 will return a bit
pattern that has a zero corresponding to any vertical line that is
connected to an address line. This works well for detecting whether
or not a key is pressed, but how can you tell which of the eight keys
connected to the vertical line it is? The answer is that if all of the

Inside the Spectrum 21

Data

b0 b1 b2 b3 b4

A AgymA A A
Space Szi“ M N B

b15 > D N\ N ~\ N\
Enter L K J H

b14 > = S s -
P 0 |) Y

b13 : N\ N N N\ N
2 9 8 7 6

§ b12 : N N\ N N N
g 1 2 3 4 5

< b11—> - : R - .
Q w E R T

b10 : N\ N N N\ N
A S D F G

b9 » S c p N N

CAPS

shit| £ | X[S|V

b8 ; ~ N ~ N

Fig. 2.5. Schematic diagram of the Spectrum keyboard.

address lines b8 to bl5 are low, you cannot. The solution is to make
only one of the address lines low at a time; then only one row of keys
can connect the input lines to low voltage. Thus instead of using the
I1/0 address 254 to read the keyboard, you have to set all but one of
b8 to bl5to 1. Forexample, to read the row of keys connected to the
address line bl5 you would have to use the following bit pattern for
the 1/O address:

bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0
oSS (RS | S (S [S N P | S S S

which is 32766 in decimal. That is, IN 32766 will return a value that,
when expressed in binary, has b0 to b4 set according to the state of
the first row of keys — caps shift to v - with 0 representing a
depressed key.

Carrying on in this way gives the following decimal values for the
1/0O addresses to read each row of the keyboard matrix:

22 An Expert Guide to the Spectrum

address I/0 address keys

line set
to zero
bl5 32766 Space to B
bl4 49150 Enter to H
bl3 57324 PtoY
bl2 61438 0to6
bll 63486 l1to$
b10 64510 QtoT
b9 65022 Ato G
b8 65278 Caps shift to V

Using this information it is possible to write programs that will
detect when a number of keys are pressed simultaneously. For
example, the following program will read in the two groups of five
keys that make up the top line of the keyboard, and display the
resulting bit pattern:

10 LET D=IN 63486

20 GOSUE 1000

30 FRINT AT 5,103

0 TEOR T8 ShE 4 STER =
50 PRINT E${I)3

60 MEXT I

70 LET D=IN 61438

80 GOSUE 1000

0 FRIMT E$(4 TO &)

100 GOTO 10

Notice that subroutine 1000, given in Chapter 1, which converts
decimal to binary, has to be included to make this program work. As
the top row of keys includes the four arrow keys this could obviously
be used in games and other programs that need movement control.
However, notice that the two half rows of keys ‘interact’, so that
pressing more than one key in each half at the same time can give
false readings.

Now that the keyboard hardware and the principles behind its
operation have been explained, you should be able to see that all the
sophisticated keyboard features are produced by the Spectrum’s
software. Machine code routines in the BASIC ROM read the state
of the keyboard. Taking into account any shift keys that have been
pressed, they convert knowledge about which key is pressed into the

Inside the Spectrum 23

code that represents one of the five possible legends on or around the
key. The software is also responsible for producing the auto-repeat
facility and checking (once every fiftieth of a second) for the
BREAK key.

When it is used as an input device the UL A also returns the state of
the EAR cassette socket as b6 of the bit pattern. If the input from the
cassette recorder is a high voltage state then b6 is a 1. Otherwise it is
zero. The ULA will return the state of the EAR socket as b6, no
matter what b8 to bl5 are set to. So if you want to read the keyboard
and the EAR socket then use one of the addresses given above. If
you want to read the EAR socket independently of the keyboard
then all the bits b8 to bl5 should be set to 1, so the I/ O port address
that should be used is 65534. In normal use the state of b6 is used to
decode the audio tones from the cassette recorder. However, it is
possible to use it for other simple input tasks. For example, the
following program will detect the start of a recording on the tape:

10 FRINT "FLAY TAPFE"

20 IF IN 65534=255 THEN FRINT AT 2,03
"Silence"!GOTO 20

30 PRINT "Sowund started"”

If you play a tape then this program will print ‘Silence’ until the first
noise on the tape is detected. Notice, however, that as the EAR input
is connected to the ULA via a low value capacitor, it cannot be used
to monitor slowly changing voltages.

The expansion connector

Most of the signals used within the Spectrum are available from the
edge connector at the back. This is usually used to connect the ZX
printer, Microdrives, and Interfaces | and 2. However, it can be used
to connect home-built peripherals, and the video signals can be used
to drive a monitor. As the Spectrum manual gives very little
information on the nature of the signals it is worth giving a list along
with brief comments. A-side connections are on the component side
of the board and B-side connections are on its reverse side.

The video signals available from 15B, 16B, 17B and 18B can be
used to drive a monitor, and so improve the quality of the display
that the Spectrum produces. The composite video signal on I15Bisa
direct connection to the output of the two transistors (emitter
follower) that drive the UHF modulator, so this has enough power

24 An Expert Guide to the Spectrum

1A
2A
3A
4A
SA
6A
7A
8A
9A
10A
11A
12A
13A

14A

15A

16A
17A
18A
19A
20A
21A

22A
23A
24A

25A
26A

27A
28A

1B
2B
3B
4B
5B

bl5 of address bus
bl13 of address bus
b7 of data bus
not connected

SLOT

b0 of data bus
bl of data bus
b2 of data bus
b6 of data bus
b5 of data bus
b3 of data bus
b4 of data bus

INT Z80 interrupt line; connecting this to +5 will stop
the interrupts generated by the ULA

NMI Z80 non-maskable interrupt line; this interrupt
isn’t used by the Spectrum. A low pulse will cause
BASIC to do a reset

HALT 7380 halt line which signals that a machine code
halt instruction has been executed

MREQ standard Z80 control bus line

IORQ standard Z80 control bus line

RD standard Z80 control bus line

WR standard Z80 control bus line

-5V low current —5V supply

WAIT 780 wait line which when held low will tempo-
rarily halt the Z80. A wait must not last for longer
than about Ims otherwise the dynamic memory
will forget!

+12V smoothed 12V supply

+12V unsmoothed 12V supply

Ml standard Z80 control bus line

RFSH Z80 memory refresh signal

b8 of address bus

b10 of address bus
not connected

b14 of the address bus
bl2 of the address bus

5V supply
9V supply
SLOT

6B
7B
8B
9B
10B
1B
12B
13B

14B
15B
16B
17B
18B
19B
20B

21B
22B
23B
24B
25B

26B
27B
28B

Inside the Spectrum 25

0 volts

0 volts

CK 780 system clock 3.5MHz
b0 of the address bus

bl of the address bus

b2 of the address bus

b3 of the address bus

IORQGE holding this line high (i.e. +5V) will stop the ULA
responding to I/ O requests. With suitable circuitry
it could be used to expand the number of 1/O
devices that the Spectrum can select

OV video ground

composite colour video signal

video Y signal

video V signal

video U signal

BUSRQ standard Z80 control bus line

RESET momentarily connecting this line to 0V will reset
the machine just as if the power had been switched
off and on

b7 of address bus

b6 of address bus

b5 of address bus

b4 of address bus

ROMCS connecting this to +5V will remove the BASIC
ROM from the Spectrum’s memory map.

BUSACK standard Z80 control bus line

b9 of address bus

bll of address bus

More information on the connections described as ‘standard Z80
control bus line’ can be found in any Z80 manual.

to drive a monitor directly. The only problem is this video output is
not the standard 75 ohm impedance, and most monitors will not
work very well with it. The three colour signals on 16B, 17Band 18B
are all unbuffered outputs from the ULA, and do not have enough
power to drive a monitor directly. This makes a buffer amplifier
essential, and to derive a standard RGB signal needs quite a
complicated subtractor circuit. All in all the composite video signal
on 15B is much easier to use! On many Spectrums some of these

26 An Expert Guide to the Spectrum

video signals are not connected, and this simple fact explains why
many attempts at driving monitors have failed! The solution is
simple - inside the Spectrum, near the video circuits to the far left of
the printed circuit board, are four links marked U, V, Y and VID. If
the ‘pads’ are connected by a wire link, then the video signals will
appear at the edge connector. However, if the pads are connected by
nothing but a white line you will have to solder a wire link to make
the signals appear.

The system diagram

Now that each section of the spectrum has been described it is time
to give a complete block diagram of the system. You should be able

Optional
L
RAM
Data
CPU [11
Z80
Address
Clock Impedance
barrier
v 8 Address
Data | bits
] 16K
LMI 889 ULA __] L_____ Video
Y
Address BAK
Com,
, b 5 Data bits
10K Keyboard
——MWW——}—o0 miC
UHF

v MOD

600 (L
= e EAR
Speaker () 1K

Fig. 2.6. Block diagram of the Spectrum.

Inside the Spectrum 27

to see all of the details that have been discussed in the previous
sections in Fig. 2.6. Although the principles that lie behind the
Spectrum’s operation are interesting, the most important hardware
features from the programmer’s point of view are the I/ O devices.
The information on how the keyboard, loudspeaker and tape
interface work will be used in later chapters to increase the range of
things you can do with an unmodified Spectrum.

Chapter Three
Inside ZX BASIC

The subject of this chapter and the next two is the internal workings
of ZX BASIC. There was little point in explaining the detailed
workings of the Spectrum’s hardware; similarly, there is little point
in giving a complete listing of the Spectrum’s BASIC ROM. Such a
listing does indeed contain all the information you could ever want
to know about ZX BASIC, but much of it will be irrelevant. If you
are writing machine code then it is helpful to know something about
the subroutines that are present in the BASIC ROM so you can
make use of them; but if you are writing BASIC then it is more
important to know how BASIC organises the memory that it uses.
Knowledge of BASIC’s general methods of obeying your commands
can also suggest ways of using BASIC more economically and
creatively.

The first part of this chapter describes the way that ZX BASIC
divides the RAM into different areas, each used for a particular
purpose. It gives an overview of the various sections, most of which
are subsequently dealt with in greater detail. Then the many uses of
the system variables area of memory are described. Chapter 4
considers how BASIC organises program lines and variables within
memory, and Chapter 5 the method that ZX BASIC uses to extend
the PRINT and INPUT commands to I/ O devices other than the
screen and the keyboard.

The memory map

When the Spectrum is first switched on, it goes through an
initialisation sequence that determines the amount of memory
available (normally 16K or 48K) and divides it up into a number of
areas. These can be seen in the ‘memory map’ given in Fig. 3.1.
Notice that some of the boundaries between areas of memory are

Inside ZX BASIC 29

Address or system End of area
variable marker
pARAMI User-defined Graphics

uUDG
Space for machine
code etc.
RAM TOP
GOSUB stack =62
ERR _SP Machine stack
Machine

stack pointer \
free R\AM

STKEND
Calculator stack

STKBOT Input data buffer
WORKSP P : <128
Command/Edit buffer
E LINE Variehi <128
-
r
PROG <128
CHANS _ ann-e info
Microdrive maps
23734 =
Sa5eD System variables
23296 Printer buffer
22528 D‘f"’:b“‘:s
16384 it i

Fig. 3.1. Memory map for the ZX Spectrum.

fixed and others are variable. For example, the display file always
starts at 16384 and ends at 22528, but where a BASIC program is
stored in memory depends on how much space the Microdrive maps
and the channel information have taken. Equally, the place where
the area used to store variables starts depends on the size of the
program area. The addresses where these movable areas of memory
start (and occasionally where they stop) are stored in the system
variables area of memory along with other data about the current
state of the Spectrum. The idea of storing an address in memory is
not difficult once you get used to it. For example, CHANS is a
system variable that holds the address of the start of the channel
information area. The CHANS system variable consists of two
memory locations (remember a single memory location can only
hold eight bits, and an address is 16 bits long) and their locations are
23631 and 23632. So if you want to know the start address of the
channel information area you have to look at (PEEK) the contents

30 An Expert Guide to the Spectrum

of memory locations 23631 and 23632. It is important to realise that
ZX BASIC doesn’t recognise names such as CHANS etc. If you
want to gain access to the information stored in CHANS you have to
use its address. The system variables area is such an interesting part
of the Spectrum’s RAM that it is given a section all to itself. The
other areas are briefly described below.

Display File (16384 to 22527)

Used to store pixel data (i.e. ink or paper) for the entire 24-line by 32-
character screen. The format used for its data storage is discussed
more fully in Chapter 6.

Attributes (22528 to 23295)

Used to store the attributes of each character location in the entire
24-line by 32-character screen. This topic is also discussed more fully
in Chapter 6.

Printer Buffer (23296 to 23551)

Used to hold a single line of 32 characters to be sent to the ZX
Printer. Notice that the characters are stored as 8 by 8 dot patterns
rather than as ASCII codes. Hence printing the contents of this
buffer is simply a matter of transferring each complete row of dots to
the printer. If the ZX Printer isn’t in use, then this area of memory
can be used to hold machine code USR functions. Refer to Chapter
7 for more details.

System Variables (23552 to 23733)

Used to hold a wide range of different values that reflect the current
state of the Spectrum. This area is discussed at length later in this
chapter.

Microdrive Maps (23734 to CHANS)

The Microdrive maps are used to store information concerning
which sectors are free and which are used on the current tape
cartridge. Of course, if the Microdrives are not in use this area
doesn’t exist, and CHANS is set to 23734,

Channel Information (CHANS to PROG—2)
This area is used to store data concerning which stream is associated

with which channel. Streams and channels are discussed in Chapter
5.

Inside ZX BASIC 31

BASIC Program (PROG to VARS—T)

Used to store the lines of text that make up a BASIC program. The
program is not stored in the same form that it appears on the screen.
Some parts of it are coded to save either memory space or time when
run. Information on the storage of program lines is given in Chapter
4.

Variables (VARS to E LINE—2)

Used to store the variables created while a program is running.
Notice that the variables area is only cleared just after the RUN
command is given, so any variables created by a program exist until
it or another program is run, or until the NEW or CLEAR
commands are given. This is also dealt with more fully in Chapter4.

Edit Buffer (E LINE to WORKSP—1)
Used to store a command or program line while it is being edited.

INPUT Data Buffer (WORKSP to STKBOT—1)
Used to store data typed in response to INPUT commands and for
other miscellaneous data storage applications.

Calculator Stack (STKBOT to STKEND—1)

Used during the calculation of any string or arithmetic expression to
store intermediate results. The workings of a stack are explained in
the next chapter.

Machine Stack (stack pointer to ERR SP)

The machine stack is used by the Z80 to store temporary data etc. It
is not possible to find the lowest address used by the machine stack
from BASIC. The reason for this is that the end-of-stack address is
permanently stored in a Z80 register called the stack pointer.

GOSUB Stack (ERR SP+1 to RAMTOP)

This is used to store the line numbers used by RETURN
instructions. The operation of this stack is mixed up with the
operation of the machine stack, so it is not easy to alter return
addresses by POKEs. The detailed workings of this stack are
explained in Chapter 4.

User Defined Graphics (UDG to P RAMT)
This area is used to store the dot patterns associated with the user-
defined characters. We return to this topic in Chapter 6.

32 An Expert Guide to the Spectrum

Notice that the Spectrum uses memory ‘from both ends’. The
program and variable storage both start from the low address end of
the RAM, and expand upwards as the need occurs. The machine
stack and GOSUB stack both start at the high address end of the
RAM and work their way down. This means that the current free
RAM is to be found between STKEND and the address in the Z80’s
internal stack pointer.

System variables

The use of the system variables to hold the addresses of the
boundaries between the different areas of memory has already been
introduced. In fact the system variables area of memory is used to
hold many different pieces of information that can be very useful to
the BASIC programmer. A full list of system variables in order of
address can be found in Chapter 25 of the Spectrum Manual.
However, they are better classified according to what they do rather
than by their location in memory. There are five groups of system
variables:

(1) the RAM boundary variables
(2) the keyboard state variables
(3) the system state variables

(4) other I/0O variables

(5) the video display variables

To avoid repetition, the other I/ O variables are described in Chapter
4 and the video display variables in Chapter 5. The use of the other
three groups is described below.

Before moving on to the uses of these system variables we must
first look at a problem common to all the groups: how a 16-bit
address is stored in a pair of eight-bit memory locations. At one
level, the answer is obvious. If you list the bits of the 16-bit number
as b0 to bl5 then the storage problem can be solved by using one
memory location to hold b0 to b7, and the other to hold b8 to bl5.
The memory location that holds b0 to b7 is called the ‘least
significant’ byte and the memory location that holds b8 to bl5 is
called the ‘most significant byte’. In the Spectrum, with one or two
exceptions, the least significant byte is stored in the memory
location with the lower address. So if memory location N holds bits
b0 to b7 of the memory location, N+1 holds b8 to bl5. To
‘reconstruct’ the decimal equivalent of a 16-bit number from its two

Inside ZX BASIC 33

eight-bit halves is quite easy. If you PEEK the least significant byte,
the decimal value returned is correct, but PEEKing the most
significant byte returns a value that is too small by a factor of 256.
The reason for this is not difficult to see if you consider the weights
given to each bit in the binary-to-decimal conversion carried out by
PEEK. For the least significant byte the weights used are 128, 64,
32,16, 8, 4, 2, 1 and these are correct for b7 to ¢ of a 16-bit binary
number as well as an eight-bit number. However, the same weights
are used for the most significant byte, i.e. bits bl5 to b8. These
should in fact be 32768, 16384, 8192, 4096, 2048, 1024, 512, 256; and
these are bigger than the first set by a factor of 256. Thus if a 16-bit
number is stored in the two memory locations N and N+1 the
following user-defined function will return its decimal equivalent:

DEF FND (N)=PEEK(N)+256* PEEK (N+1)

Similarly, if you want to POKE the 16-bit number that corresponds
to the decimal number V into the two memory locations N and N+ 1
then use:

POKE N, V=256*INT(V/256)
POKE N+I,INT(V/256)

The expressions V—=256*INT(V/256) and INT(V/256) occur so
often in this type of application that it is worth defining two user-
defined functions for them. The expression V-256*INT(V/256) finds
the remainder after dividing V by 256, and INT(V/256) is simply the
whole number of times that 256 will divide V. The function

DEF FNH(V)=INT(V/256)

will return the decimal equivalent of the most significant byte of V
and

DEF FNL(V)=V—-INT(V/256)*256

will return the decimal equivalent of the least significant byte of V.

Using the RAM boundary variables

All of the RAM boundary variables have been described in
connection with the memory map given earlier. In this section some
of their possible uses to the ZX BASIC programmer are described.

The most obvious use for the RAM boundary variable is to find
out how much memory is being used and for what. For example, the

34 An Expert Guide to the Spectrum

difference between the address stored in PROG and the address
stored in VARS will tell you how much memory is being used by a
BASIC program. The following subroutine will PRINT the amount
of memory allocated to the program and variables, and the amount
of free memory:

2000 DEF FNp(N)=FEEK(MNY+Z fJbHELIx(N*l‘
010 FRINT "Frogrami: "“"3FNp(23427)--FMNp (236
020 FRINT "Varisbles$ "3FNp(2 3641" “FNp (2
030 FRINT "Free! "jFNp(23613)-FNp(234653)
2040 RETURN

The system variables used in the subroutine are:

23627 VARS
23635 PROG
23641 E LINE
23613 ERR SP
23653 STKEND

The estimate of the amount of free memory produced by this
program does not include the memory used by the machine stack, so
itistoo large by around 10 memory locations. The Spectrum’s ROM
contains a machine code routine that will return the exact amount of
free space available, but there is no guarantee that its location will
remain fixed in future issues of the ROM. However, you might like
to try replacing line 9030 with:

2030 FRINT "Freel "3}65536-USR 7962
This should return a very similar result.
Another use of the boundary variables is to find the start of the

program or variables area so that they can be examined. Anexample
of this is given in the next chapter.

The keyboard state variables

The keyboard state variables can be used to control the way that the
keyboard behaves. This can be very useful in applications programs
that need to tailor the keyboard’s response for user data entry. The
system variables concerned are:

KSTATE - 8 memory locations from 23552 to 23559
This is used to record which keys have been pressed for the purpose

359
3627

/4

Inside ZX BASIC 35

of controlling the auto-repeat facility, and is not really of any use to
the BASIC programmer.

LAST K - 1 memory location at 23560

This memory location holds the code of the last key to be pressed. It
is updated every 1/50th of a second unless the Spectrum is loading
or saving to tape, or making a sound. The value in LAST K is used
by the INPUT routine to make sure that no key-presses are lost. In

this sense it acts as a single character type-ahead buffer! To see
LAST K working try

10 FRINT CHR$(FEEK(235%40))
20 GOTO 10
which prints the character corresponding to the code stored in

LAST K. Notice that INKEYS$ reads the keyboard directly and so
bypasses LAST K.

REPDEL - 1 memorylocation at 23561 and REPPER - 1 memory
location at 23562

These two keyboard variables need to be considered together
because they both control aspects of the auto-repeat. REPDEL sets
the time that a key has to be held down before it starts to repeat, and
REPPER is the rate at which the key auto-repeats. You can POKE
values into these variables to alter the way the keyboard behaves.
For example, to produce a keyboard with an almost instantaneous
repeat rate use:

POKE 23561,1:POKE 23562,1

High repeat rates are useful when keyboard input is used to control
the movement of screen graphics during games etc. Very low repeat
rates produced by POKEing both variables with zero are useful for
novice computer users.

RASP - 1 memory location at 23608 and PIP - 1 memory
location at 23609

These two memory locations control the length of characteristic
sounds associated with the keyboard. The value in RASP alters the
duration of the warning tone that accompanies errors, such as
typing in lines that are too long. The value in PIP alters the duration
of the keypress tone. Normally this is so short that the tone is
reduced to a click. By experimenting with PIP you can achieve a
variety of sounds.

36 An Expert Guide to the Spectrum

The system state variables

The system state variables are used by ZX BASIC to keep track of
the current state of the machine. Most of these variables are of little
use to the BASIC programmer and cannot be altered. Included in
this group, however, is the familiar three-location timer starting at
23672. It counts the number of TV frames that have been displayed
since the Spectrum was switched on. The function

DEF FNU () =(FPEEK(Z3672)+256%PFEK(2R3673) +
6GG3EXFEER(Z234674)) /50

returns the time in seconds since the Spectrum was switched on. To
zero the timer use

POKE 23674,0:POKE 23675,0:POKE 23676,0

There are two other variables included in this group which may be
of use to Z80 assembly language programmers.

ERR NR - 1 memory location at 23610

Holds one less than the error report code. This could be used as part
of an implementation of an ON ERROR GOTO type of statement
to extend ZX BASIC, but this is not an easy project.

ERR SP - 2 memory locations at 23613

This contains the address of a pair of memory locations on the
machine stack. These locations contain the address of the machine
code routine within the ZX BASIC ROM that is jumped to when an
error occurs. If you decrease the contents of this pair of locations by
two you will find that the BREAK key is disabled, but any
subsequent errors that occur will cause the machine to crash. It is
possible for the Z80 assembly language programmer to alter the
error return address to replace the standard error handling by a new
error routine. However, this is not as easy as it first seems, since the
Spectrum changes the error return address as it runs to allow for
different types of error handling. For example, during an INPUT
command a data entry error doesn’t crash the machine, it simply
causes the input editor to ask for the input over again. This is a
difficult, challenging but possible project!

Inside ZX BASIC 37
The shifting memory

As already described, many of the areas of memory change their size
as a program is entered or run. For example, each time a line of
BASIC is entered the program area increases in size. What is less
obvious is that each time a memory area changes its size all the
memory areas above it have to be moved, and all the system
variables that mark the boundaries have to be changed. For
example, if space is made within the input data area then the
calculator stack has to be moved up. All this shuffling of memory is
taken care of automatically by ZX BASIC, but it is worth knowing a
little of how it is done.

Whenever space of x bytes is to be made withina memoryarea,allthe
memory above the area and below STKEND is moved up. Then the
fifteen system variables starting at VARS (23627) and ending at
STKEND (23653) are examined one by one. If the system variable
contains an address that is above the area of memory that is
being extended, then the address is increased by x. The opposite
process is carried out when an area of memory is being reduced by x
bytes. In other words, all the memory above the area is moved down
by x bytes, and the fifteen system variables that contain addresses
above the area are reduced by x.

This shifting and adjustment of system variables has to be taken
into account by any Z80 assembly language programs that alter the
standard position of any memory area, or the value of any system
variable. For example, in Chapter 5 the shifting of memory causes
trouble if the area of memory ‘pointed at’ by CURCHL is positioned
above the input editing area and above STKEND. Although the
area of memory isn’t moved, because it is above STKEND, its
system variable contains an address that is above the input editing
area, so it is adjusted as if the area had been moved. The result is an
irrecoverable system crash! Another consequence of the memory
shifting is that you cannot be sure that anything stored above 23734
will stay at a fixed location in memory. Maybe you knew where it
was at the start of the program, but that doesn’t mean it will stay
there for the entire course of the program. The moralis to find every
item, variable, program line etc. each time you need it, unless you
know it couldn’t possibly have moved. Some examples of finding
objects in memory are given in the next chapter.

38 An Expert Guide to the Spectrum

Conclusion

This chapter has described the overall layout of the Spectrum’s
memory in some detail. However, discussion of and examples
involving many of the items introduced have been postponed to later
chapters, where their relation to other topics can be explored. If, in
later chapters, you lose a sense of where everything is, then use the
memory map in this chapter as a guide.

Chapter Four

The Structure of
ZX BASIC

ZX BASIC is a completely new implementation of BASIC, and it
has many new features. In particular its string handling is a complete
break from the methods used by the older and clumsier Microsoft
standard. The topic considered in this chapter is not the outer
appearance of ZX BASIC, but how it organises and uses memory to
implement some of the more important facilities it provides. The
most complete statement of the way ZX BASIC works is, of course,
contained in a listing of the ZX BASIC ROM. However, to a great
extent this is overprovision. Most of the ROM is concerned with the
detailed implementation of arithmetic, functions etc. These sections
might be of interest, but are generally of little practical use.

The best way to understand the workings of ZX BASIC is to study
the way that it organises and uses memory, and the principles that lie
behind its implementations of GOTOs, GOSUBs, FOR loops etc.
This knowledge makes it easier to understand the overall layout of a
ROM listing; in most cases it is also sufficient to make consulting a
ROM listing unnecessary. To demonstrate this, a number of
practical examples of manipulating the program and variables area,
and altering the way that ZX BASIC works, are given. These
examples are all written in ZX BASIC to make them as accessible as
possible; but if you already know or are learning Z80 assembler,
then they would all benefit from the extra speed that would result
from being rewritten in Z80 assembler.

The format of variables - a variable dump program
Chapter 24 of the Spectrum Manual gives a great deal of

information about the format of the different types of variable
created by ZX BASIC in the variables area of memory. This said, it

40 An Expert Guide to the Spectrum

is still worth summarising the information presented to show the
system that lies behind all the formats.

The six different types of variable in ZX BASIC are all stored in
the variables area of memory, starting with a single byte which
serves both to identify the type of variable and to store the first (and
possibly only) character of its name. The way these two pieces of
information are packed into a single byte is not difficult to
understand. ZX BASIC regards upper and lower case characters as
identical when naming variables, so the first letter of a variable name
can always be stored as a lower case character. Using the full ASCII
code for the 26 lower case letters is perfectly possible, but it uses up a
whole memory location (8 bits) when only 5 bits are necessary. It is
much more efficient to store a number in the range 0 to 25 to indicate
which of the 26 letters a variable name starts with. It also frees three
of the bits in a memory location to store a variable type code. Thus
the first byte of each variable has the following format:

b7 b6 bS b4 b3 b2 bl b0

type code letter code

The type codes used are:

2 string variable

numeric variable with a single letter name
numeric array

numeric variable with a multiple letter name
character array (i.e. a dimensioned string)

index variable (i.e. a variable used in a FOR loop)

~N N0 B W

Notice that the type codes are converted to a three bit binary
number, and the resulting bit pattern is used to set b7 to b5
respectively. For example, if the type code is 5, the three-bit binary
equivalent is 101, and thus b7=1, b6=0 and b5=1. The ASCII code
of the first letter of the variable name can be constructed from the
value of b4 to b0 by simply adding 96. Thus if A holds the address of
the first memory location used to store a variable, the following
function

DEF FNt(A)=INT(PEEK(A)/32)

will return the value of the variable type code as given in the above
table and

The Structure of ZX BASIC 41

DEF FNc$(A)=CHRS$(PEEK(A)-FNt(A)*32+95)

will return the first letter of the variable name. (Both functions make
use of techniques of BASIC bit manipulation described in the last
chapter.)

What follows the first byte of each variable depends on what type
of variable it is. These data formats are given in detail in Chapter 25
of the Spectrum Manual, and are reproduced with additional
comments in Fig. 4.1. Although a knowledge of these formats is

1 1 4 =6

bytes
Type + "
[letter Exponent Mantissa ‘
name data
Type 3 - Numeric variable with
a single letter name
1 1 1 1 1 4 =N+§
bytes
| ;z‘::":, 2nd letter [3rd letter /5 g [Nth letter | Exponent ‘ Mantissa
- ’ 8 ~ 7
name Last letter has b7 set Data
Type 5 - Numeric variable with
N letter name (N > 1)
1 1 1 1 =N+3
Type + N = length 1st 2nd Nth aye
letter of string Char Char Char
- J
Name Data Data
info
Type 2 - String variable length = N
1 2 1 2 2 =N+3
Type + N =total M= No. of 1st Last Elements bytes
letter length Dimensions Dimension Dimension 5 bytes each
L Y J
Name Information on data Data
Type 4 — Array of numbers
: 2 1 2 =N+3
Type + N =total M = No. of Last Elements bytes
letter length Dimensions Dimension 1byte each
[o] -)
Name Information on data Data
Type 6 — Array of characters
1 5 5 5 2 1 = 19 bytes
Type + fris | Line Statement
| letter l Value Limit Step e S
=)
Name Data FOR loop information

Type 7 — Index variable

Fig. 4.1. Data formats for variables in ZX BASIC.

important to the assembly language programmer, the ZX BASIC
programmer can use the standard functions VAL and VALS$ to find
out what the contents of a variable are. For example, if N§ contains
a non-array variable’s name, then

PRINT VAL(NS$)

42 An Expert Guide to the Spectrum

will print its contents if it is a numeric variable, and
PRINT VALS$(NS)

will print its contents if it is a string variable. Similar expressions can
be used to print any element of an array variable. For example, if N§
contains the name of a single dimensioned numeric variable then

PRINT VAL (N$+“("+STRS$(I)+)")

will print the contents of element I. The idea behind printing
elements of arrays is to construct the full name of the element as a
string and then use VAL or VALS$ to evaluate it.

Using this method of discovering the contents of a variable, the
two functions given earlier, and information about how many
memory locations each type of variable occupies, it is possible to list
all the variables used by a program. Such a variable dump program
is given below.

9100 DEF FNt(A)=INT(FEEK(A)/32)
9110 DEF FNce$(A)=CHR$(FEEK(A)-FNL(A)X32+96)
9120 DEF FNvO)=FEEK(23627)+256XPEEK(23628)

2130 LET V0=FNv()
2140 FRINT "Varisble“;TABR(1S) 3" Type" s TAE(25) "Value
2150 DIM N$(15)3iDIM T4C10)

9200 IF FEEK(V0>=128 THEN STOF

9210 LET I0=13LET Ne=""I1LET Té="Numeric"ILET Ne=""
9220 LET N$(I0)=FNc$ (V0>

2230 IF FNt(V0)>=3 THEN GOTO 9280

2240 IF FNtV0)«:E THEN GOTO 9300

?250 LET V0=V0+13LET I0=I10+1

2260 LEYT N$(X0)=CHR$ (FEEK(VO)~INT(FEEK(V0)/128)x128)
9270 IF INT(PEEK(V0)/128)x128==0 THEMN GOTO 9250
2280 LET V0=V0+4

P290 FRINT N$ITAECIS) 3 T4 TARCZE) JVAL (N$)

9295 GOTO 9200

2300 IF FNLV0)Y<H7 THEN GOTO 935
2310 LET T#="Index"

2320 LET VO=V0O+1%

?330 COTO 9290

2350 IF FNtVO)Y<H2 THEN GOTO 9400

9360 LET T#="String" (LET N$(2)="4"

9370 LET V0=VI+FEEK(VO+1)+256XFEEK(V0+2)+3
2380 FRINT MEITABUIS)ITHITARZS)Y JUALS INS)
2390 GCOYO 2200

2400 IF FNt(V0)Y=6 THEN LET N$(2)="$"

The Structure of ZX BASIC 43

410 LET T%="Array"

2420 LET I0:=0

2430 FRINT N$;TABCIS5) ;T4 TAE(29) 3 "DIMC"}

2440 FRINT PEEK(VO+4+T0%2)+254AXPEERK(VI+S+T0X2) 3
2450 LET XI0=I0+1

2?2460 IF I0=PEEK(V0+3) THEN PRINT ","3:G60T0 9440
470 FPRINT ")t

2480 LET VO0=V0+3+FEEK(V0+1)+286XFPEEK(V0+2)

?490 GOTO 2200

The first part of the program defines three useful functions. FNt and
FNc$ have already been described and FNv returns the current start
address of the variables area of memory. Lines 9130 to 9150 print a
heading, initialise the variable VO which is used to mark the current
position in memory, and dimension two arrays used in the program.
N§ is used to build up the name of each variable and T$ is used to
hold a description of its type. The rest of the program is in the form
of a large loop startingat line 9200. Line 9200 tests for a value of 128,
which is used to mark the end of the variables area. Lines 9210 to
9295 build up the name of a numeric variable in N§ and then print its
value at line 9290. If the variable is type 3 then the single letter
already in N§ is the variable’s name, and line 9230 passes control to
line 9290 which prints the variable’s details. If the type is 5 then the
first character is followed by a sequence of letters making up the
variable’s full name (see Fig. 4.1). Lines 9250 to 9270 extract each
character in turn, storing it in N$. The end of the variable’s name is
marked by the value of b7, which is 0 for all the characters but the
last. Line 9280 adds 6 to VO to make it point at the start of the next
variable.

If the variable type is 7 then control passes through line 9300.
Afterwards, line 9320 adjusts VO to point to the next variable. The
details of the index variable are printed by line 9290.

If the variable type is 2 then control passes through line 9350. Line
9370 sets VO to point at the start of the next variable by adding the
length of the string to it (see Fig. 4.1). Line 9380 prints the current
data stored in the string using the VALS function as described earlier.

Finally, if the variable type is4 or 6 then the variable isan array. In
this case the program doesn’t attempt to print the data in the array
because this might be rather a lot! Instead the dimensions of the
array are printed. Line 9400 adds a “$” to the name of the array if it is
a character array. Apart from this, both types of array can be treated
in the same way, because their dimension information is stored in
the same way. The number of dimensions is contained in the fourth
location of the array and this is PEEKed in line 9460 to see if the

44 An Expert Guide to the Spectrum

values of all of the dimensions have been printed. Line 9440 will
print the value of a single dimension, and 10 is used to count the
number of values printed so far. Finally, line 9480 uses the total
length of the array to update VO so that it points to the start of the
next variable.

If you add this program to the end of one of your own, then
GOTO 9100 will print a list of all the variables that your program is
using plus 10, VO, N$ and T$ which are used by the variable dump
program itself. The arrays N§ and T$ are used in preference to
strings because the variables area changes as the number of
characters in a string is increased or decreased. If a string changed its
size while the memory dump program was running then the location
of all the variables above it would be changed, and VO would no
longer necessarily point to the start of a variable. However, a
character array is fixed in size, and using it doesn’t cause the
variables area to be rearranged. You can add other facilities to this
variable dump program, such as printing the amount of memory
that each takes, but beware of using any strings within the dump
program itself, or things will go wrong!

The numeric data formats

The way that numbers are stored within a computer is a very
technical subject but there are two basic methods - integer storage
and floating point storage. Integer storage gives a limited range of
numbers but is fast and easy when used in arithmetic. It is essentially
the simple binary representation of numbers that we have been using
since Chapter I, extended to include both positive and negative
numbers. Floating point storage can be used to represent a very wide
range of numbers, but floating point arithmetic is quite slow
compared to integer arithmetic. Floating point storage is based ona
binary equivalent of the decimal exponential notation used on many
calculators.

Many versions of BASIC provide two different types of numeric
variable - integer for whole numbers, and real for numbers with a
fractional part. When to use each type of variable is left to the
prgrammer’s discretion. ZX BASIC also provides both types of
storage, but within the one type of numeric variable. Which form of
storage is used is decided by ZX BASIC. If a number will fit into the
range of the integer storage provided, then it is stored as an integer.
Otherwise it is stored as a floating point number. By this mechanism

The Structure of ZX BASIC 45

the programmer gets the best of both types of storage, but need
never worry about how values should be stored. The details of both
types of storage are well described in Chapter 24 of the Spectrum
Manual.

The dynamic management of variables

The previous sections describe the format used to store variables.
However, there is another aspect to variable storage that concerns
us. As new variables are created and strings altered, the variables
area is rearranged. How this rearrangement is achieved can affect
the efficiency of programs, so the details of the dynamic
management of the variables area are important.

The variables area is emptied by a RUN or CLEAR command,
and variables are created as and when they are encountered. To
avoid moving things around too much, new variables are added to
extend the variables area upward. Thus, initially at least, variables
are stored in the variables area in the order that they are created.
Imagine the difficulty of adding one character to the end of an
existing string variable. If the string variable was created early in the
program, then each time a single character was added all the other
variables stored above it would have to be moved up by one memory
location. This suggests that a program like

10 LET Ag=vn

20 DIM Mc1000)
30 LET Af=As+vXn
40 GOTO 30

would run faster if the array was dimensioned, i.e. created, before
the string variable A$ (by swapping the order of the first two lines of
the program). In the listed program, approximately 5000 memory
locations have to be moved each timean“X" isadded to the string. If
the array were defined first, then no variables would have to be
moved to add a single character to AS. This sort of problem causes
many versions of BASIC to slow down when handling large arrays
and strings — but not ZX BASIC! So, both versions of the above
program run at roughly the same speed on the Spectrum!

The reason for this is that ZX BASIC uses an interesting method
of managing the variables area. Each time a string variable occurs on
the left hand side of a LET statement its old value is destroyed by
moving the variables area down to ‘close up’ the memory space that

46 An Expert Guide to the Spectrum

it occupied. Then it is re-created at the top of the variables area just
as if it were a completely new variable! In short, a string variable is
re-created each time it occurs on the left hand side of a LET
statement. This re-creation has two effects. Firstly, unlike other
systems, there are no old versions of strings hanging around in the
variables area; hence there is no need to stop calculating and
perform ‘garbage collection’ now and again. Secondly, the most
recently used string variable is always at the top of the variables area,
and the most frequently used string variables tend to be close to the
top of the variables area. This minimises the number of moves made
and the number of locations affected by each move due to string
handling. You should now be able to see that the program given
above, which adds a single letter to the variable A$, will only result
in the array being moved once to bring the string to the top of the
variables area.

The same system of management is used when an array is defined.
When an array is dimensioned, an existing version of the array is
removed by moving the variables above it down to close up the space
that it occupied. Then a new array is created at the top of the
variables area. This means that it is possible to dimension arrays
more than once in ZX BASIC, whereas other versions of BASIC
treat arrays as fixed-size variables.

How ZX BASIC is stored

Each line of ZX BASIC is stored using the format shown in Fig. 4.2.
The first two bytes of each line contain the line number, stored in the

2 2 1
: Length
Line
AumBer +°Efr:leTxEtR Text ENTER

Fig. 4.2. Format of a BASIC line.

reverse order to most other numbers, i.e. with the most significant
byte first. The line number is used to determine where GOTOs and
GOSUBs transfer control to, and to determine where new lines are
inserted in the program. Lines are stored in order of ascending line
number. The second two bytes are the length of the text, including
the enter character that marks the end of each line. These two bytes

The Structure of ZX BASIC 47

are stored in the usual order, and are used to find the location in
memory of the start of the next line.
If A is the address of the start of a BASIC line then the function

DEF FNL(A)=256*PEEK(A)+ PEEK(A+1)
returns its line number. The function
DEF FNn(A)=PEEK(A+2)t+256*PEEK(A+3)+A

will return the start address of the next line number. You can detect
the end of a program when FNn(A) is equal to the contents of the
system variable VARS. As well as examining line numbers, you can
also change them by POKEing values. Although ZX BASIC will
only accept line numbers in the range | to 9999, it will work with
numbers in the range 0 to 61439. It will work in the sense that
GOTOs and GOSUBs will correctly transfer control to line numbers
in the larger range, but the editor will only allow you to edit line
numbers in the smaller range. This anomaly can be turned to
advantage by changing the first line number of a program to 0, thus
making the line un-deletable. There are more sophisticated methods
of using these semi-legal line numbers to add protection to programs
but once you know about them they are very easy to defeat.

The text portion of a program line is stored exactly as it was typed
from the keyboard, with a few exceptions. Firstly, any keywords within
a line are stored as single bytes corresponding to their character codes, as
given in Appendix A of the Spectrum manual. Thus GOTO s notstored
as the four separate letters ‘G’, ‘O’, “T” and ‘O’ but as the single-byte
code 236. Secondly, all numeric constants are stored within the line
in two different forms: as the string of digits typed in from the
keyboard, and as a five-byte number in the format used for a
numeric variable. The string form of the number is used when
listing, and the five-byte internal form is used by ZX BASIC when
the program is running, to save time converting constants to the
internal format that all ZX calculations use. Character code 14 is
used to indicate that a five-byte floating point number follows, and
this is used by the LIST routine in the ZX BASIC ROM to skip over
internal formatted numbers in listings. Five-byte floating point
numbers can occur in other places, as well as following a numeric
constant, so always look for code 14 when you scan a BASIC line.

48 An Expert Guide to the Spectrum

A keyword finder

As an example of using information about the internal format of ZX
BASIC, the following program searches the program area and
prints out the number of any line that contains the keyword in C$.

10 INFUT C$
20 GOSUE 9500
30 STOF

2500 DEF FNp()=FEEK 23635+236XPEFK 23636

2510 DEF FNv(O)=FEEK 23627 +256XFPEFFK 23628

9520 DEF FNL(A)=ZS6XFEEK A+FPEEK(A+1)

@530 FRINT Cé$:' AT "

2540 LET S=FNp ()

P550 LET F=FNv()

9560 LET L=FNL(S)

9570 LET S=85+4

2580 IF Si=F THEN RETURNM

?589 LET C=FEEK §

2590 IF C=13 THEM LET S=8+1:160T0 %60

2600 IF C=14 THEN LET S=8+51G0T0 95980

2610 IF C=CODECC#$(12) THEN LET S=8+15607T0 2580

2620 FRINT "line "jL

9630 LET 8=85+1

?640 GOTO 9580
The subroutine starting at 9500 does all the work of looking for the
keywords in C$. Lines 9500 to 9520 define three useful functions.
FNp returns the start address of the program area, FNv returns the
start address of the variables area and FNL returns the line number
of the line starting at address A. Lines 9580 to 9640 form a loop that
scans the program area line by line and character by character
looking for character codes that match CODE(C$(1)). Line 9590
detects ENTER characters that mark the end of each program line,
and line 9600 detects code 14, which indicates that the next five bytes
are the internal form of a numeric constant, and should be skipped.

This simple program is of great practical use in checking that all

GOSUBs and GOTOs are correct. (Note that to enter a keyword
such as LET, first enter THEN to get the cursor into K mode, then
enter the keyword, then delete the THEN.) You can even search for
all the lines that use variables starting with a particular letter, by
entering a single letter instead of a keyword. However, if you want to
search for a variable with more than one letter in its name, the
program will have to be extended to match each letter against the
contents of memory.

The Structure of ZX BASIC 49

As another example of how the keyword search subroutine can be
used to extend the Spectrum’s facilities, consider the following
simple changes

620 FOEE 23825, L ~INT (L/Z56)%206

9630 FOKE 23626, INT(L/256)

&40 STOF
These new lines POKE the system variable E PPC with the line
number of the first line to contain the keyword stored in C$. As E
PPC is used to store the position of the editing cursor, this routine
will move the editing cursor to the first occurrence of the keyword in
C$. By adding a ‘search from last position’ option, this routine could
easily be extended so that the editing cursor could be quickly
positioned anywhere in a program.

A line renumber program

Renumberinga ZX BASIC program looks easy at first sight. All you
have to do is scan through the program area, altering the two bytes
at the start of each line that holds its number. The trouble is that this
ignores the changes that must be made to line numbers quoted as
part of GOTOs and GOSUBs. Itis not difficult to think up a number
of possible algorithms that would adjust the GOTO and GOSUB
line numbers, but all of them involve scanning through the entire
program and searching for every occurrence of the keywords GOTO
and GOSUB. Such an algorithm in a ZX BASIC program would
make it very slow to use.

As a compromise, the following subroutine renumbers all the
lines of a program, ignoring the GOTO/GOSUB problem, but
prints a list showing the correspondence between the new and the
old line numbers so they can be corrected by hand.

Q700 LET PF=FNp()

710 IMFUT "Start number 360
@720 INFUT "Step size "3T0

Q@720 FRINT “DLD“‘]AE(lU*‘”NEH“
740 LET L=FML(F)

7H0 IF L9000 THEM STOF

760 FRINT LITAB(ID 380

Q@770 FOKE F,INT(S0/2%4)

780 FOKE F+1,80-INT(S0/256)X754
Q790 LET S0=80+10

2800 LET F=P+4+FEEK(FP+Z2)+Z2896XFEEK(F+23)
2810 COTO 2740

50 An Expert Guide to the Spectrum

Line 9700 sets P to the start of the program area using the function
FNp defined in the last section. Lines 9710 and 9720 get the line
number that the renumbered program should start with, and the
step from one line number to the next. Line 9740 gets the old line
number into L using the function FNL defined in the last section.
The new line number i1s POKEd into the correct place in the line by
lines 9770 and 9780. Line 9790 increases the new line number by the
step size, and line 9800 adjusts P to point to the start of the next line,
by adding the contents of the two locations that hold the length of
the text part of the line. The renumber stops when the old line
number reaches 9000 to avoid renumbering the renumber program
or any of the other programs given in this and earlier chapters.

GOTO

The ZX BASIC GOTO statement works in much the way you would
expect, but there are a few special features that are worth taking into
account. When a GOTO is encountered, the program area is
searched for the first line number that is equal to or greater than the
line number used in the GOTO. If one is found, then control is
passed to that line. If such a line isn’t found then the program ends
with a normal report code. This means that unlike other versions of
BASIC, it is impossible to cause an error witha GOTO statement in
ZX BASIC. In some ways this form of GOTO is an advantage, in
others it can be a serious problem. For example, suppose the line
GOTO 4000 occurs in a program without a line 4000, and the first
line larger than 4000 is 5000. In this case the GOTO 4000 transfers
control to line 5000, and the program may work as the programmer
intended. Now suppose that at a later date the programmer
innocently adds a new section starting at line 4500. The result is that
the GOTO now transfers control to 4500, and the program may not
work. The task of finding what has gone wrong is very difficult,
because the cause of the trouble - the incorrect GOTO - is part of the
program that hasn’t been changed! The moralis always to make sure
that GOTOs (and GOSUBs) transfer control to line numbers that
exist. A second unusual feature of ZX BASIC is the way that the line
number quoted in a GOTO (or a GOSUB) can be a numeric
expression. For example, in ZX BASIC

GOTO 200+10*4

has the same effect as GOTO 240. This can be used to advantage ina

The Structure of ZX BASIC 51

number of ways. For example, one of a number of routines can be
selected according to the value stored in a variable using

GOTO L(I)

where L is an array containing the line numbers of the start of each
routine, and the value of I governs which one control is passed to.
That is, if I contains | the routine starting at L(1) will be jumped to,
and likewise for other values of 1. (This will, of course, also work
with GOSUB.) In other versions of BASIC this facility is called a
‘computed GOTO’ and is usually written

ONL.GOTO, L,/ E2, 31300

where L1, L2 etc are the line numbers that are jumped to when lis 1,
2 ... respectively.

Another use for expressions as part of GOTOs (or GOSUBs) is to
make programs slightly more readable. If part of your program,
starting at 3123 for instance, reads in data for further processing,
then an instruction like

60 GOTO 3123

does the job of getting data but conveys nothing about what is going
on to someone reading the program. However, if you define a
variable with an appropriate name to hold the line number of the
start of the routine, then GOTOs (and GOSUBs) become much
more readable. For example

10 LET READDATA=321223

Ll *)

60 GOTO READDATA

ZX BASIC has the ability to handle more than one statement per
line, using the colon as a separator. This is a very useful facility, but
GOTOs can only transfer control to the start of multi-statement
lines by way of line numbers. In fact ZX BASIC works with a line
number, and a statement number within the line, that can be used to
pinpoint any statement in a program, even if it is part of a multi-

statement line. For example
1203 PRINT "1"$FPRINT "2"{FRINT "3"

1s a multi-statement line. The PRINT “1” command is line 1203
statement 1, PRINT “2” is line 1203 statement 2, and so on.
Although there is no ‘GOTO line number, statement number’

52 An Expert Guide to the Spectrum

command that will transfer control into a multi-statement line, it is
not difficult to produce one. The pair of system variables NEWPCC
and NSPCC are used to hold the line number and statement number
within the line that control is to be passed to. You can force a jump
by POKEing NEWPCC with the desired line number and then
POKEing NSPCC with the statement number within the line. For
example, try:

10 FPRINT 13 3FRINT Z33FRINT 33
20 LET L=102LET S=21CG0T0 92800
800 FOKE Z3818,L-INT(L/254)XK204
2810 FOKE 23619,INT(L/256)

820 FOKE 23620,6

If you run this program, you will see 123 printed followed by 23
repeating over and over again until you press BREAK. Routine
9800 will transfer control to line L and statement number S, so line
20 is equivalent to GOTO line 10, statement 2. Notice that routine
9800 should not be jumped to by a GOSUB because the transfer of
control it creates would stop a RETURN from ever being obeyed!

GOSUB and the stack

The ZX BASIC GOSUB command works in exactly the same way
as the GOTO command, but stores information on the GOSUB
stack. This is used by the RETURN command to transfer control
back to the statement following the GOSUB. To understand the
GOSUB and RETURN command it is necessary to know a little
about the way a stack works.

A stack, or to give it its proper name a ‘Last In First Out (LIFO)
stack’, is a collection of storage locations plus a pointer used to mark
the first free location. For example, asimplearray canbe used as a stack
if it is associated with a variable, or stack pointer, that holds the
index of the first free element. Data is entered to a LIFO stack by a
push operation. This stores the data in the free location indicated by
the stack pointer, and automatically moves the pointer on to the
next free location. Similarly, data is retrieved from a LIFO stack by
a pull operation. This moves the stack pointer back to the first
location used and then returns the data stored in it. If the array S is
being used as a stack, with P as its stack pointer set to point initially
at the first element of S, then a push operation would be

The Structure of ZX BASIC 53

LET S(P)=D:LET S=S+1
and a pull operation would be
LET S=S—1:LET D=S(P)

where the variable D is used to hold the datain both cases. Notice that
neither routine checks to make sure that the bounds of the array are
not exceeded. A stack can either grow upwards, as in the example, or
downwards, as is the case with most Z80 stacks, using high memory
locations for data storage first.

The important feature of a LIFO stack is indicated by its name.
The last data item pushed onto the stack is the first item to be pulled
from it. For example, if the items A, B and C are pushed onto a
stack, then the first pull will return C, the second B and the third A.
This is exactly the behaviour needed to implement the storage of
return line numbers following a GOSUB. Each GOSUB effectively
pushes a return line number onto the GOSUB stack and each
RETURN pulls a return line number from the GOSUB stack. Thus
if you execute GOSUB A, GOSUB B and GOSUB C in that order
then the first RETURN will transfer control to the line following the
GOSUB C, the second RETURN will transfer control to the line
following the GOSUB B and the third RETURN will transfer
control to the line following the GOSUB A. In this way a stack
serves both to remember the return addresses and to supply them in
the correct order as they are needed.

The GOSUB stack used in the Spectrum is a little odd; it is mixed
up with another stack used by the Z80 to store the return address for
the machine code equivalent of a GOSUB. To be more precise, the
GOSUB stack is part of the Z80 machine stack. However, it turns
out that most of the time the system variable ERR SP contains the
address of the first item on the machine stack proper, and the
contents of ERR SP plus two are therefore the address of the first
item on the GOSUB stack.

It is interesting to note that both the line number and the
statement number within the line are stored on the GOSUB stack.
This means that a GOSUB within a multi-statement line will
RETURN to any statement following in the same line. For example,

10 GOSUE 10003PRINT "line 10 statement 2V
20 FPRINT "line 20 statement 132

will cause both PRINT statements to be executed as subroutine 1000
returns control to line number 10, statement 2. The exact data stored

54 An Expert Guide to the Spectrum

on the GOSUB stack are first a two-byte number representing the
current statement number plus one, followed by a two-byte number
representing the current line number.

This information can be used to write a program that will cause a
RETURN to transfer control to any line and statement number.
This sort of disorderly jumping around a program is not to be
encouraged, but it is sometimes useful for implementing special
error RETURNSs from subroutines.

10 GOSUE 200

20 FRINT "line 20"
30 FRINT “line 30"
40 STOF

100 LET CG=2+PEEK 23613+256XFEEK 23614
110 FOKE G,L~-IMNT(L/256)X256

120 FOKE CG+1,INT(L/2S56)

130 FOKE G+2,85

140 RETURM

200 FRINT "line 200"

210 LET L=30SLET S=1

220 GOTO 100
Subroutine 100 first PEEKs ERR SP to find the location of the first
item on the GOSUB stack. Then lines 110 and 120 POKE a new
value for the line number, and line 130 POKEs a new value for the
statement number. In this way LET L=x:LET S=y:GOTO 100 will
result in the next RETURN transferring control to line x statement
y. You should be able to see this in action: the subroutine 200 given
above RETURNS control to line 30 statement | rather than line 20
statement |.

The FOR loop

ZX BASIC’s implementation of the FOR loop is very clever and
versatile, but different from that used by most versions of BASIC.
To allow FOR loops to be nested one within the other the usual
method is to use a stack, a FOR stack, to store the line numbers to
which NEXT commands will transfer control (the so called ‘looping
lines’). The reason for using a stack to store the looping lines is
similar to the reason for using a GOSUB stack to hold RETURN
line numbers. Each FOR loop pushes the line number of its looping

The Structure of ZX BASIC 5b

line onto the FOR stack, and this means that a NEXT statement will
always transfer control to the looping line of the last or innermost
FOR loop. However, ZX BASIC does not use a FOR loop stack,
and this makes it behave in a different way to most other versions of
BASIC.

Eachtime that a FOR statement is encountered, the variables area
is searched for any variables with the same name as the index
variable used. If one is found, then it is removed. Then a new
variable with the same name is created as an index or type 7 variable.
The format of an index variable was given earlier in the chapter, but
it is repeated in Fig. 4.3. Notice that as well as the usual five-byte

1 5 5 5 > .

T?lgt?e: Value Limit Step Line No. Stat:(r?ent

e et v J o - ST Y =
Name Data FOR loop data Looping
line data

Fig. 4.3 Data format for an index variable in ZX BASIC.

value associated with every numeric variable, it contains all the
information needed to implement the FOR loop. The ‘limit’ and
‘step’ are the final value and step size of the FOR loop respectively.
The looping line is stored as a two-byte line number and a one-byte
statement number, and this defines the statement to which a NEXT
command quoting the index variable will transfer control.

The only real effect that a FOR statement has is to create a new
index variable. All of the real work in a FOR loop is carried out by
the NEXT statement. When a NEXT statement is encountered the
‘step’ is added to the ‘value’ and the result is compared with the
‘limit’. If the result exceeds the ‘limit’ then the loop ends. Otherwise
the control is passed to the looping line. Apart from its use by a
NEXT statement, the index variable can be manipulated and used
just like any other numeric variable. Thus to bring a FOR loop to a
premature end you can simply set the index variable to be bigger
than the limit.

There are two important consequences of ZX BASIC not using a
FOR stack. Firstly, unlike most versions of BASIC, you can jump
out of a FOR loop before it is completed without any worries. If you
do this in a BASIC that uses a FOR stack the entry on the stack
never gets removed (pulled), so the stack slowly fills up, finally
giving an error message. The only penalty in ZX BASIC is that an

56 An Expert Guide to the Spectrum

index variable is left hanging around, but this can be used as an
ordinary variable, and a new FOR loop on the same index will also
reuse it. Even though jumping out of FOR loops does no harm in ZX
BASIC it is not a good habit to acquire. If you do, then your
programs will be more difficult to transfer to other versions of
BASIC.

The second effect of not using a FOR stack is remarkable to
watch! A spinoff of using a FOR stack is that improper nestings of
FOR loops are automatically detected, and an error message issued.
In ZX BASIC, however, almost any nesting of FOR loops will work.
For example, try

10 FOR I=1 TO 10
20 FOR J=1 T0 10
30 FRINT J,I

40 MEXT I

S50 NEXT J

Most versions of BASIC, and most programmers familiar with
other versions of BASIC, would reject the above program as being
incorrect (lines 40 and 50 should be swapped to produce the correct
nesting of two FOR loops). If you run the above program in ZX
BASIC you will find it not only works but might even be useful!
Trying to understand such an odd nesting of FOR loops should
convince you to avoid them! The nesting works because each of the
NEXT statements at lines 40 and 50 is obeyed without reference to
the rest of the program. So line 40 transfers control to line 20 ten
times for values of I from 1 to 10. Each time through the loop line 20
creates the index variable J and sets its value to 1. After this control
passes to line 50 which causes the FOR loop on J (i.e. lines 20 to 50)
to be carried out ten times. Each time through this loopthe NEXT I
at line 40 doesn’t repeat the FOR loop on I because the ‘value’ stored
in | is already bigger than the ‘limit’. It does, however, increase the
‘value’ stored in the index variable by adding the ‘step’. You should
now be able to understand the sequence of numbers that this pair of
loops prints on the screen!

Conclusion
The information presented in this chapter should help you to

understand the inner workings of ZX BASIC. Many of the program
examples given not only illustrate the ideas involved but also form

The Structure of ZX BASIC 57

the basis of a useful collection of programming utilities. If you
would like to test your understanding of ZX BASIC then thereis no
better way than by working on some of the many projects that spring
from these examples. Much of the work can be done in ZX BASIC,
but if you are learning Z80 assembler then you will find many
rewarding problems that are not too difficult to solve.

Chapter Five

1/0 - Channels and
Streams

The Spectrum has a very sophisticated and general method of
dealing with different /O devices, based on streams and channels.
The standard Spectrum has a very limited range of I/ O devices, and
this means it is possible to use special commands for each device.
For example, to send data to the screen you use the PRINT
statement, but to send data to the ZX Printer you use the LPRINT
command. Once the Microdrives are added to the system, inventing
special commands quickly becomes inadequate. Even without the
Microdrives there are advantages to using the Spectrum’s general
method of defining the device to be used in an 1/O operation.
Surprisingly, the Spectrum manual completely fails to mention or
even hint at the method of handling 1/0 via streams and channels.

Streams - INPUT # and PRINT #

A good way of thinking about 1/0 is to separate it into two parts,
one corresponding to the software that receives or generates the
data, and the other corresponding to the hardware that receives or
generates the data. In ZX BASIC the software component of 1/O is
referred to as a ‘stream’ and the hardware component as a ‘channel’.
The key difference is that a stream is a featureless flow of data into or
out of a program, but a channel corresponds to a particular I/O
device such as the ZX Printer. Think of a stream as a collection of
data items on their way to or from some piece of hardware. Streams
are identified by a number in the range 0 to 15, and their basic
operations are reading and writing data. The instruction

INPUT #s:‘input list’

will read data from stream ‘s’ into the variables in the ‘input list’. For
example

1/0 - Channels and Streams 59

INPUT #0;A;B;A$

will read data from stream 0 and store it in the variables A, B and AS.
In the same way the command

PRINT #s,‘print list’

will send data to the stream ‘s’ from the variables in the ‘print list’.
For example

PRINT #0;TOTAL;A$

will send data to stream 0 from the variables TOTAL and AS.

Notice that both the INPUT # and PRINT # can be used in
exactly the same way as the ordinary INPUT and PRINT
statements. Any item that you can use as part of a normal ‘input list’
or ‘print list’ can be included as part of the stream [/O statements.
For example,

PRINT #2;“HI THERE”;TAB(10);FOLKS”
and

INPUT #0;“What is your name”;N$

are both valid. The PRINT statement sends the literal string “HI
THERE”, then a TAB code, followed by the literal string
“FOLKS” to stream 2. Notice that the data that is sent to the stream
1s exactly the same as the data that would be sent to the screen. The
INPUT statement is a little more complicated in that it not only
requests data from stream 0, but also sends data in the form of the
literal string “What is your name”. Each stream number is in fact
associated with two streams of data — an input stream and an output
stream. Data written to the stream by either PRINT or INPUT is
sent to the output part of the stream, and any data read from the
stream is obtained from the input part of the stream.

In practice it is possible to use a PRINT or INPUT statement that
refers to more than one stream. For example

PRINT #5:“Hi there”;#6:“folks”

will send the literal string “Hi there” to stream 5 and “folks” to
stream 6. In other words a ‘stream specifier’ #s can be included in a
print or input list wherever it is necessary to change streams.
Although switching streams in mid-statement is possible, it is best
avoided unless there are special reasons for doing it. Programs that
use a number of streams in each I/O statement are very difficult to
understand, debug and alter.

60 An Expert Guide to the Spectrum
Channels - OPEN and CLOSE

The idea of a stream of data is easy enough to understand, but you
might be wondering how the stream numbers are associated with
hardware 1/0O devices? The answer is that before any data is sent or
received over a stream it has to be OPENed. OPENing a stream
serves two purposes. It associates a stream number with a particular
I/0O device, and signals the 1/O device that it is going to be used.
Often as well as just signalling that a device is about to be used,
OPENIng a stream involves initialising the device to get it into a
state where it can be used. However, such initialisation depends very
much on the device itself. To OPEN a stream, ZX BASIC provides
the command

OPEN #s,c

where ‘s’ is the stream number being opened, and ‘c’ is a string
specifying the channel it is being associated with. Following this
command, the destination of any data sent to the stream ‘s’ will be
the channel ‘c’, which will also be the source of any data read from
the stream. Before a practical example of using the OPEN command
can be given we need to know what channels the Spectrum has.

The unexpanded Spectrum (i.e. without Microdrives) recognises
only three different channels:

K - the keyboard channel
S - the screen channel and
P - the printer channel

Thus,
OPEN #5,“K”

OPENSs stream 5 and associates it with the keyboard. Following this
command

INPUT #5:A:B

will get data from the keyboard in the same way that a normal
INPUT command would. However, the command

PRINT #5;“HI THERE”

now sends data to the output side of stream 5, which is associated
with the keyboard’s display area at the bottom of the screen. Thus
the literal string “HI THERE?” is printed in the lower part of the
screen normally reserved for INPUT messages. If you try this you

1/0 - Channels and Streams 61

are unlikely to be able to see the string, as the lower area of the screen
is cleared when a program halts or when an INPUT statement is
encountered. If you would like to see the effect of sending data to the
‘input area’ of the screen try:

10 ODFEN #5,"K"
20 PRINT $53IRND
30 GOTD 20

Y ou should see random numbers printed on the screen starting from
the bottom and scrolling up. The program will end withan OUT OF
SCREEN error message, as the input area of the screen will not
scroll in the same way as the normal print area.

Although in principle each stream has both an input and an
output side, in practice the only channel that can accept both input
and output is the keyboard channel. The other two - screen and
printer — are output only channels, and any attempt to read data
from them produces an error report J. Notice that this restriction is
entirely a feature of the hardware that the stream is attached to.

You can associate more than one stream with any given channel,
but if you want to change the channel that a stream is associated with
then its current association must be removed by CLOSEing it. The
ZX BASIC command

CLOSE #s

will remove any existing association between the stream ‘s’ and a
channel. In this sense CLOSEing is the reverse of OPENing a
channel. CLOSEing a stream can also be used to inform the
hardware component of a channel that it is no longer required by the
stream, and any ‘cleaning up’ operation that it needs should be
carried out ready for another channel to use it.

It is important to notice that while a channel can be used by a
number of streams, a stream can only be associated with a single
channel. For example, the ZX Printer might be associated with
channels 4 and 6, so

PRINT #4;'print list’
and
PRINT #6;print list’

would both send data to the printer, but it is impossible to associate,
say, stream 7 with both the printer and the screen.

62 An Expert Guide to the Spectrum

The use of streams - device independence

So far the only advantage to be gained from using streams is the
ability to send data to the lower half of the screen. For the ZX
BASIC programmer using an unexpanded Spectrum there is in fact
only one other reason for using streams, but this is an important
reason. Device independence is an idea that is usually reserved for
advanced computer science courses, but it is a simple and very useful
idea. Device independence is just the ability to write a program
without having to worry about where the data that it needs is coming
from or where the data it generates is going to. For example, you
might write a program that produces listings of financial data
without worrying about whether the output was goingto a screen or
to a printer. The device that the output was actually going to would
be selected at a later data by the user of the program. If you use
PRINT and LPRINT to send data to the screen and the printer
respectively then it is not easy to write device independent programs,
but using streams and channels it is!

Consider the problem of writing a program to print a list of
random numbers either on the screen or on the printer, depending
on which the user wanted. Using PRINT and LPRINT the program
would be something like:

10 INFUT "Prinmter or Screern "3A4%
20 IF A$CLY="F" THEN LFRINT RND
30 IF A$CLlr="8" THEN FRINT RND
40 GOTO 20

Using streams and channels the program would look something like:

10 INFUT "Frinter or Screen "jA%

20 OFEN #9,A%(1)

30 PRINT #53RND

40 GOTO 30
Because the channel specifier can be a string variable, stream 5 is
associated with either the printer or the screen. Another way of
achieving the same result would have been to OPEN two different
streams, one to the printer and one to the screen. You could then use
the fact that the stream specifier can be an arithmetic expression to
select which one was to be used, as in the following program:

10 INFUT "Frinter or Screen "iA$
20 OFEN #%5,"p"
30 OFEN #&6,"8"

1/0 - Channels and Streams 63

40 IF AsClr="P" THEMN $=%5

G0 IF A$d(1)="8" THEN 8=6

60 FRINT #8IRND

70 GOTO 40
Although this example is too small to be really convincing in itself,
you should be able to see that in a large program it is an advantage to
use streams to group together all similar PRINT or INPUT
statements. If this is done, changing where they send their output is
simply a matter of changing the appropriate OPEN command, or
the stream number that they use. When you add the Microdrives to
the system, streams are unavoidable, so it makes sense to get the
maximum benefit from them even at this early stage.

The default streams

The four streams 0 to 3 are automatically OPENed by the Spectrum
as part of its set-up procedure. Initially the stream-to-channel
assignments are as follows:

stream channel
0 K
1 K
2 S
3 P

So even without an OPEN command
PRINT #2;“HI THERE”

will print onto the screen. These streams are used by the Spectrum to
direct program data to the correct device. For example, an LPRINT
sends data to stream 3. These assignments of streams to channels can
be changed using OPEN commands but the streams themselves
cannot be CLOSEd. An attempt to CLOSE one of the default
streams results in it being re-OPENed to its initial channel, as given
in the table above.

Other stream commands

The only other two stream I/ O commands that can be used with the

64 An Expert Guide to the Spectrum

unexpanded Spectrum are LIST and INKEYS$. The full form of the
list command is

LIST #s,n

where ‘s’ is the stream number that the program is to be listed to, and
‘n’ is the line number that the listing will start from. For example

LIST #1

will list a program on the bottom part of the screen normally
reserved for input, but

LIST #3

is the same as LLIST.

The other stream-oriented command, INKEYS$, can be used to
return a single character (byte) from any stream that is associated
with a device that supports input. The function

INKEYS #s

will return a single character from the stream ‘s’. If no character is
available from the input device, then the null string is returned. The
only problem with this extended form of INKEYS is that the
unexpanded Spectrum has only one input channel - the keyboard.
However, once the Microdrives are added the number of input
channels increases, and so does the number of useful stream-
oriented commands.

Channels and streams - memory formats

Although the ZX BASIC programmer need not worry about how
channels and streams are implemented to make use of them, there
are ways in which the machine code programmer can make use of
such knowledge. In particular, the channel is the ideal way of
extending the range of 1/O devices that the Spectrum can handle
without having to write code for special I/ O commands.

The information that defines each channel is stored in the channel
information area starting at CHANS and ending at PROG—2
(where CHANS and PROG are both system variables). Each
channel has a separate ‘channel record’ which has the following
format

1/0 - Channels and Streams 65

address size
n 2 bytes address of output routine
nt+2 2 bytes address of input routine
n+4 1 byte channel code letter

where the input and output routines are machine code subroutines.
The output routine must accept Spectrumcharacter codes passed toit
in the A register. The input routine must return data in the form of
Spectrum character codes, and signal that data is available by setting
the carry flag. If no data is currently available then this issignalled by
resetting both the carry and the zero flag. If the channel cannot
support input, or cannot support output, then the address for the
routine that performs the illegal operation should be set to an error
handling routine. The standard way of handling errors inZX BASIC
is via a Restart call to address 8. In Z80 assembly language this
amounts to

ERROR RST 0008
DEFB errocode

where ‘errocode’ is the numeric code of the report to be given to the
user.

The channelrecords forthethreestandard Spectrum channels, and
an additional channel that has not yet been described, are as follows:

address keyboard channel record

CHANS address of lower screen printout routine
2 address of keyboard input routine
+4 K channel K identifier

screen channel record

15 address of screen printout routine
7 address of error routine
+9 S channel S identifier

editing buffer channel record

+10 address of buffer input routine
2 address of error routine
+14 R channel R identifier

66 An Expert Guide to the Spectrum

ZX Printer channel record

3 i) address of ZX Printer routine
+17 address of error routine
+19 P channel P identifier

Notice that each channel record is in the standard format, as
described, and that the only channel that can support both input and
output is the K channel. The new R channel is used internally by the
Spectrumtosend datatotheediting buffer. The OPEN command will
not allow the user to associateastream with the R channel, soits useis
limited.

Important Note - the format of a channel record is different when the
Microdrives and interface 1 arein use. If youare going to make sense of
this information to create your own channel records and want your
program to work with both theunexpanded and expanded Spectrum
see Chapter 10.

Data about the association of streams withchannelsis stored inthe
system variables area of memory, in the 38-byte area starting at
STRMS (address 23568). The stream table, and each pair of bytes in
this table, holds a number ‘x’ that representsthe address of the start of
a channel record. Rather than simply storing the address of the
channel record, ‘X’ is the ‘distance’ that the channel record is away
from the start of the channel information area:

address of start = address of channel + x — |
of channel record area

So each entry in the stream table is one more than the number of
memory locations that the channel record is offset from the start of
the channel information area. As there are a maximum of 16 streams
you would think that a maximum of 32 bytes(i.e. onechanneladdress
per stream) would be sufficient to store all of the channel and stream
associations. In fact the extra six bytes are used to store channel
information for three internal streams corresponding to stream
numbers 255, 254 and 253. These three internal streams are
automatically associated with channels R, S and K respectively, and
as stream numbers are restricted to the range 0 to 15 they are
inaccessible from ZX BASIC. However, the presence of these three
internal streams does have to be taken into account when trying to
find the address of the channel record corresponding to any of the
streams 0 to 15. The first three entries in the stream table are for the

1/0O - Channels and Streams 67

internal streams 253 to 255; the fourth entry gives the address of the
channel record to be used with stream 0, and so on. This means that
the start of the stream table, as far as external streams are concerned,
1S

STRMS+6 or 23574

and the address of the start of the channel record associated with
stream s (s in the range 0 to 15) is stored in the two memory locations
starting at:

23574+s*2

When a stream is OPENed to a particular channel, the OPEN
command stores the difference betweenthestart of the channelrecord
and the channel area itself, plus one, in the correct position in the
stream table. When an INPUT or PRINT command sends datatoa
particular stream, the stream table is examined to find the address of
the channel record. When a stream is CLOSEd the number stored in
its entry in the stream table is set to zero. Thus a zero entry in the
stream table is used to detect an attempt to use a stream that hasn’t
been opened yet. Sevenstreams are automatically OPENed, thethree
internal streams and streams 0 to 3 as already described.

This system of channel records and the streamtableis extended for
use by the Microdrives, but its essential features remain the same.
Each channel is described by a channel record, and streams are
associated with channel records by use of the stream table.

Before we consider using the stream and channel I/ O, it is worth
mentioning the only other system variable that is connected with
channel 1/O CURCHL. Each time a stream-oriented 1/0
command is used, the stream number is used tolook up the address of
the channel record in the stream table. This address, once found, is
then stored in the system variable CURCHL to direct all of the data
produced by the I/ O command to the correct channel. Thusfollowing
acommand suchas PRINT #s, CURCHL containstheaddress ofthe
start of the channel record associated with stream ‘s’.

Creating your own channels

If you have special I/ O device connected to your Spectrum, or if you
are planning to build a new device, then the problem of how to send
data to it or receive data from it willhave occurred toyou. Indeed, it is
usually thought easier to construct a hardware interface to the

68 An Expert Guide to the Spectrum

Spectrum than a ‘software interface’ with ZX BASIC. Using the
information about stream-oriented 1/O in the last section it is
comparatively easy to interface special 1/ O devicestoZX BASICina
way that allows them to be treated on a par with Sinclair’s own
hardware.

The usual way of providing software to handle special 1/ O devices
is to write BASIC subroutines using IN and OUT. These send and
receive data directly to and fromthe I/ O portsallocated to thedevice.
For example, if a sound generator was allocated port 31 for its
frequency control register then

OUT 31.f

would send the data (intherange0to 255)tothesound generator,and
so set its frequency. For simple devices, and devices controlled by
individual bits in the data, IN and OUT are very suitable. However, if
the device is ‘character-oriented’ - if it receives and sends data in the
form of characters - then INand OUT areinadequate. Forexample, a
parallel printer and a modem are both character-oriented devices,
and the best way to deal withthemisviatheusual PRINTand INPUT
statements. Even if suitable subroutines could be written usingQUT
and IN to send and receive numericand stringdata, itis difficult to see
how they could be used to LIST programs to the new devices. Clearly
the way to go about providing a software interface to new character-
oriented devices is via streams and channels.

Adding a character-oriented device to ZX BASIC’s system of
streams and channels can be done in one of two ways; either by
changing the addresses stored in an existing channel record, or by
creating a completely new channel record.

The first method involves POKEing new addresses into anexisting
channel record that point to your own machine code routines,
positioned somewhere in memory. Forexample, supposeyouwantto
interface a full-sized printer in place of the ZX Printer. Changing the
address stored in the first two locations of the ZX Printer’s channel
record (to point to your own printer driver output routine) will make
the commands LPRINT and LLIST, as well as any I /O commands
referring to streams OPENed to channel P, send their datatothe new
printer. Writing the new printer driver iseasy in principle. Allit hasto
do is accept ASCII character codes in the A register, and use these to
print the correct ASCII characters on the printer. However, the
Spectrum’s character set includes many characters that the standard
ASCII character set lacks, and these would have to be detected and
correctly interpreted by the driver. For example, all of the position

//0 - Channels and Streams 69

and attribute control items within a PRINT statement will be sent to
the printer driver as control codes, as listed in Appendix A of the
Spectrum manual. For instance, LPRINT TAB(10); sends ASCII
codes 23, 10 and 0 to the printer driver. The 23 is the Spectrum’s
control code for TAB, and the following two codes are the least and
most significant byte of the parameter of the TAB function. (The
codes that are sent to the Spectrum’s output drivers are discussed
more fully in the next chapter.) It is important to realise that all of the
Spectrum’s output is converted to a stream of ASCII characters and
codes before it is printed on the screen. This makes it possible for a
printer driver to respond to or ignore all of the Spectrum’s position
and attribute control items as desired. Forexample, if the new printer
was a colour printer then it could change the printing colour in
response to

LPRINT INK 3;“Hi there”

which sends the ASCII codes 16 (for INK) followed by 03 (for colour
03) to the printer driver.

As an example of this method of interfacing a new I/ O device, the
following program changes the output addressstored in the P channel
to refer to a machine code routine stored in the printer buffer area of
memory. (Notice that this only works becausethe ZX Printeris notin
use!) The new machine code output routine doesn’tdoanythingreally
useful with the data it receives; it just sends it to I/ O port 254, which
controls the speaker and border colour. At least this ensures that its
effects can be seen and heard! The Z80 assembly language for this
simple driver is

address assembler code comment

23296 outdrv LD BC,254 01,254,00 load BC reg with 254
23299 OUT (C),A 237,121 send A register to port 254
23301 RET 201 return to ZX interpreter

This is used in the following ZX BASIC program:

10 DATA 01,254,00,237,121,701
20 FOR A=Z32946 TO 23301

30 READ D

40 FOKE A,D

S0 MEXT A

70 An Expert Guide to the Spectrum

100 GOSUE 1000
110 FOR I=0 TO 7
120 LPRINT X3
130 MEXT I

140 GOTO 110

1000 LET C=FEEK 23431 + 256XFEEK 23632
1010 LET C=C+15

1020 FOKE C,23296~INT(23296/256) K256
1030 FOKE C+1,INT(23296/256)

1040 KETURN

The machine code output routine is stored in the DAT A statement in
line 10, and loaded into memory by lines 20 to 50 (23296 is the start of
the ZX Printer buffer). Subroutine 1000 changes the address in the
channel record for channel P. Line 1000 getsthe address of the start of
the channel area into cand thenline 1010 finds the start of the channel
record for channel P. Lines 1020 and 1030 POKE the address of the
new output routine into the first pair of locations in the channel
record. If you enter and run this program you willsee the border flash
and change in a very wild manner. If you break into the program, you
will obtain further proofthat the new outputroutineissendingdatato
the border control port by LLISTing the program to it. (Note:
disconnect the ZX printer before running this program.)

Changingtheaddressesstored inexisting channel recordsis aneasy
method of adding new devices, but it does have the disadvantage of
removing one of the Spectrum’s existing I/ O devices. In practice it is
impossible to modify channel K (the keyboard’s channel record)
because its I/ O addresses are restoredeachtimean INPUT statement
is executed. This leaves the channelrecords forchannel Sand channel
P as the only candidates for modification, and as channel S is far too
useful the only real candidate is P. This is fine as long as you don’t
want to use more than oneextral/Odevice,and youdon’t want to use
the ZX Printer at the same time.

To add any number of extra I/ O devices it is necessary to add new
channel records. If you want to do this in a completely general way,
then you must take into account how the Microdrive modifies the
stream/ channel system of operation. This is dealt within Chapter 12.
Adding a new channel record sounds very easy, but there are a few
minor details to consider. Firstly, it is possible to create a channel
record anywhere inmemory, not justinthe channelinformation area,
but if the channel record is stored above the INPUT workspace area
(starting at WORKSP) the CURCHL (current channel) system

1/0 - Channels and Streams 71

variable will be altered as memory is added to the workspace area
during an INPUT command. This, of course, will mean that the
current location of the channel record will be lost, and the Spectrum
will crash. However, if the channel record is stored below the INPUT
workspace area everything works correctly. In the demonstration
given below, the ZX printer buffer is used to store both the new
channel record and the new 1/0 routines. In a real application the
channel record would be added to the channel information area, and
details of how to do this are also given in Chapter 12. A second
difficulty is that the OPEN and CLOSE commands will only work
with the standard channel records for K,S and P. This means that as
well as providing new channel record and I/ O routines, youalso have
to provide a subroutine to open the channel to any stream, and if
necessary a subroutine to close it. Putting all this together gives the
following Z80 assembler for the channel record and I/ O routines:

address assembler code comment

23296 chanrec DEFB0O 0 1.s.b. of output address
23297 DEFB91 091 m.s.b. of output address
23298 DEFB 11 11 l.s.b.of input address
23299 DEFB91 91 m.s.b of output address
23300 DEFB“E” 69 channel identifier

23301 outdrv LD BC,254 (01,254,00 load BC reg with 254
23304 OUT(C),A 237,121 send contents of A to 254
23306 RET 201 return to ROM code
23307 indrv RST 8 207 error restart

23308 DEFB 18 invalid device error code

The first five bytes form the new channel record. The routine
starting at 23301 is the output routine and this simply sends the code
in the A register to output port 254, which is the speaker and border
colour port. The routine starting at 23307 is the input routine and
this simply reports an error to indicate that input is not allowed with
this channel. Obviously in a real application either routine could be
very much more complicated. The following BASIC program uses
this machine code:

10 DATA 0,91,11,91,69,1,25%4,0,237,
121,201,207,18

20 FOR A=Z3296 TO 23308

72 An Expert Guide to the Spectrum

30 READ D
40 FOKE &,D
G0 MEXT A

100 LET 8=5iGOSUE 1000
110 FRINT #53RND;
120 GOTO 110

1000 LET A=23574+2x8

1010 LET C=PEEK Z234631+256XPEFK 23632
1020 LET R=23296-C+1

1030 FOKE A,R-INT(R/256)X256

1040 FOKE A+1,INTC(R/256)

1050 RETURN

Lines 10 to 50 load the new channel record and I/ O routines into the
ZX printer buffer. Subroutine 1000 will open stream s to the new
channel. In other words it is the equivalent of OPEN #s,“E”. Line
1000 works out the correct address for stream s in the stream table.
Lines 1010 and 1020 work out new channel records offset from the
start of the channel information area (plus one), and lines 1030 and
1040 store it in the stream table. Line 100 uses subroutine 1000 to
open stream 5 to device E, and lines 110 to 120 provide a
demonstration by sending the codes corresponding to random
numbers to the sound and border control port. A further
demonstration can be gained by stopping the program and typing
LIST #5. This produces a flash of colour and sound indicating that
the program has been listed to port 254! If you change line 110 to
read

110 INPUT #5;i

then you will get the correct error message, indicating that this
channel cannot be used for input.

Apart from having to write more comprehensive and specialised
I/O drivers, there is nothing difficult about adding new channel
records to ZX BASIC. Notice, however, that the above program will
not work if the Microdrives are connected — but the modification
necessary to make it work are trivial (and described in chapter 10).

The problems of writing an output driver have already been
described, but before bringing this chapter to a close it is worth
mentioning the extra requirements for an input driver. If an input
channel is going to supply a single character code, as an eight-bit A
to D convertor might, then the best BASIC command to use is

1/0 - Channels and Streams 73

INKEYS #, which will return a single character. However, if you are
planning to use INPUT# to read inacollection of character codes then
you have to be aware of two things. Firstly, INPUT statements also
perform output by printing prompts etc. [tis not enough to make the
output routine an error return: you have to handle any data that the
INPUT statement sends, even if you simply ignore it! Secondly, an
INPUT # statement accepts data as if it was being typed at the
keyboard. This means that if you use INPUT #s;i to read in a
number to the variable i, then the device driver has to send a
collection of ASCII codes corresponding to digits and ending with
an ENTER code, just as anumber would beentered fromthe keyboard.
Finally, notice that even when reading data from a special piece of
hardware, the INPUT command will interpret editing codes, delete
etc, correctly! The best way to think about it is that INPUT always
works as if it were receiving a stream of character codes
corresponding to keys that are being pressed on the keyboard.

Conclusion

The Spectrum’s system of streams and channels is something of a
surprise bonus to the ZX BASIC programmer. Used within
programs it provides the advantage of device independence, and an
overall increase in flexibility, with no disadvantages. To the Z80
assembly language programmer, streams and channels are the ideal
way of providing software interfaces with any new equipment.

Chapter Six
The Video Display

The hardware that generates the Spectrum’s video display has
already been described in Chapter 2, but there the emphasis was on
general principles and how the video hardware co-operated with the
rest of the machine. In this chapter the methods that the Spectrum
uses to generate a video display are discussed in detail, with the
emphasis on the way that the software and harware interact.

The Spectrum’s video display deserves close inspection because it
combines a number of interesting features in a way that produces a
flexible system with reasonable memory requirements. Its flexibility
comes from its use of a single high-resolution mode to display both
text and graphics. This, in theory at least, permits the free mixing of
text and graphics anywhere on the screen, but in practice the
Spectrum’s software restricts the positioning of characters to a
number of predetermined character locations. The saving in memory
is achieved by the use of ‘parallel attributes’ to control colour. This
does indeed save a great deal of memory while stillallowing the use of
eight colours. The price to be paid for this economy is the restriction
on the number of colours that can be used in each character location.
Surprisingly, parallel attributes work very well and fit naturally into
the way that many graphics programs organise colour.

Although the Spectrum’s display is praiseworthy there is still
room for improvement. Fortunately, most of the shortcomings are
to be found in the software, and this is something that can be
extended to provide whatever facilities are required. However, to
make this possible it is important to have a good understanding of
how things work.

Black and white to colour

The easiest sort of display to work with is a black and white or two-

The Video Display 75

colour display. The reason for this is that a single binary bit (i.e. 0 or
1) can indicate which one of two states something is in. The simplest
graphics scheme associates one colour with each state, for example
black with 0 and white with 1. In this way a bit pattern can be used to
represent the colours of a collection of dots on the screen. Notice
that each bit in the bit pattern controls the colour of exactly one dot
on the screen. This correspondence between bits and screen dots
gives this method of generating graphics its usual name, bit-maped
graphics.

The Spectrum uses a bit-mapped graphics method, so each of the
dots that make up the 192 by 256 screen is controlled by a single bit
stored somewhere in memory. Notice that as each memory location
holds eight bits it can control the colour of eight dots on the screen.
The exact correspondence between memory locations and groups of
eight screen dots is described in the next section.

This method using a single bit to control the colour (black or
white) of a single dot on the screen, must be modified to include the
use of more than just two colours. This is more difficult than you
might think. The most obvious method for associating more than
one bit with each screen dot soon uses up a great deal of memory.
For example, to provide a choice of four colours for a dot takes two
bits, doubling the amount of memory required. A choice of eight
colours requires three bits, sixteen colours requires four bits, and so
on. To produce the Spectrum’s eight-colour display in this way
would take 18K of memory, which would make a 16K colour
Spectrum an impossibility. Besides using a large amount of
memory, this extended bit-mapped technique creates other
problems. It is very difficult to retrieve data from memory fast
enough to supply three bits per screen dot.

The solution adopted by the Spectrum is based on the observation
that most colour displays use only two colours in any given region of
the screen. For example, a blue sky with white clouds and a yellow
sun uses three colours, but near the cloud we have only blue/white
and near the sun only blue/yellow. In the Spectrum the screen dots
are grouped in eight by eight squares corresponding to the familiar
24 lines of 32 character locations. Within each of the character
locations each dot can only be one of two possible colours - in the
ZX BASIC jargon the ‘ink’ and ‘paper’ colours. As in the simple two-
colour example, the choice of ink or paper colour for a dot is
controlled by a single bit in a memory location. The extra flexibility
of this new arrangement comes from the fact that the ink and paper
colours within each character location are controlled by a single

76 An Expert Guide to the Spectrum

memory location, an attribute byte. The Spectrum’s colour display
is a halfway house between a simple two-colour display and a true
multi-colour display. Each dot on the screen corresponds to a single
bit in memory that determines whether it is an ink or a paper dot.
The actual colour assigned to ink and paper dots within any given
character location is determined by the values stored in the
corresponding attribute byte. The advantages of this parallel
attribute method of producing a colour display are easy to
appreciate. A great deal of memory is saved by using a single
attribute byte to control the ink and paper colours for the 64 dots in
a character location. However, the limitation of the scheme is
equally obvious - only two colours can be present in each character
location.

The video memory

There are two areas of RAM involved in the production of the
Spectrum’s video display — the display file, between 16384 and
22527, and the artribute file, between 22528 and 23295. As you might
expect, the display file is the region of memory used to hold the bits
that determine whether each dot on the screen is anink or paper dot.
Similarly, the attribute file is the area of memory where the attribute
bytes are stored. Knowing this is a step in the right direction, but to
control the screen directly you need to know exactly how to find the
bit that controls a particular dot, or the byte that controls a
particular character location. What is required is an equation that
will convert screen co-ordinates into the address of the memory
location concerned. Obviously there are going to be two types of
equation, one for the display file and one for the attribute file.

The display file map

The most obvious arrangement for the display file is to use the first
memory location (i.e. 16384) to store the first eight dots in the top
row, the second memory location to store the next eight dots in the
row and so on. This is indeed the case, and in general each row of 256
dots is stored in 32 consecutive memory locations. However, there
are complications. The rows are not stored in the obvious order i.e.
first row first, second row second and so on to the bottom row.
Instead they are stored in an order that reflects the 24 lines of

The Video Display 77

character locations. After the top row of dots comes the top row of
the second line of character locations, then the top row of the third
line of character locations, and so on to the top row of the eighth line
of character locations. In other words, the top rows of each of the
first eight lines of character locations are stored first. After this the
second row of dots of each of the eight lines of character locations
are stored, then the third row, and so on. This pattern of storage is
then repeated with the next eight lines of character locations, and
finally with the last eight lines of character locations. Notice that this
effectively divides the screen up into three portions of eight lines
each. Each portion is then stored in the order that the rows of dots
make up the lines of character locations, i.e. all the first rows, then
all the second rows and so on (see Fig. 6.1).

-«—1dot row

=256 dots
: Stored in
; Top Vs . 32 memory
(8 lines of character locations) locations

Middle 3

Bottom 3
including input area

Fig. 6.1. How the video display is divided up for storage in memory.
This storage scheme is easy to understand once the basic sequence
has been grasped. Perhaps the easiest way to do this is to watch the
following program in action:
10 FOR I=16384 TO 22827
20 FOKE X,2%5%5

30 NEXT I

This program stores 255 in each of the memory locations in the
display file in turn. As 255 is 11111111 this causes the eight dots
controlled by the memory location to be displayed as ink dots. In
this way the position of the dots corresponding to each memory
location can be seen in sequence, and the order that the dots are
changed to ink is as described above.

We now know the correspondence between memory locations

78 An Expert Guide to the Spectrum

and dots, but to be of any use this information has to be presented as
an equation that will convert screen co-ordinates into the address of
the controlling memory location. There are two ways of specifying
the location of a dot on the screen: by character location and by
graphics co-ordinates. For example, you might want to find the
address of the memory location that controls a particular row of
eight dots in a particular character location. If the character location
is in line L and column C, then the memory location that controls
row R is given by:

16384+2048*INT(L/8)+32*(L—-8*INT(L/8))+256*R+C
To prove the accuracy of this formula, try the following program:

10 DEF FMm(L,C,R)=14384+Z048XINT (L /8
+32KCL-BXINT (L./78))+ 254 XR+C

20 CLS

30 FOR MN=0 TO 7

40 FOR I=0 TO 31

90 FOR J=0 TO 23

60 FOKE FMNm(J,I,N),289%5

70 MEXT J

80 MEXT I

Y0 NEXT M

This fills the screen from top to bottom and left to right.

The alternative way of specifying a single dot uses the familiar x
and y co-ordinates. This results in an even more complicated
equation giving the address of the memory location that controls it:

16384-+32*(INT((175-Y)/8)—INT((175-Y)/ 64)*8
+8*(175—Y-INT((175-Y)/8)*8)+64*INT((175—-Y)/ 64))
+INT(X/8)
The bit in the memory location is given by:
8—X+INT(X/8)*8

This equation may seem remarkably cumbersome, and indeed it is
when written in BASIC. However, operations that involve dividing
by and multiplying by powers of two are easy to implement in Z80
assembler. It is easier to understand the equation if it is written using
the standard operations

x DIV y meaning INT(x/y)

and

The Video Display 79

x MODy meaning the remainder after dividing x by y
re. x—INT(x/y)*y

Using these operations and Z=175—Y the equation becomes:

16384+32*((Z DIV 8) MOD 8+8*Z MOD 8+64*Z DIV 64)
+X DIV 8

Even after all this work it has to be admitted that, apart from their
use in Z80 assembler, such equations have very little value simply
because they are so complex. However, knowledge of the overall
structure of the video storage can be very useful indeed, as will be
illustrated by the programs in the next chapter.

The attribute file map

The equation giving the location of the attribute byte that controls
any given character location is very simple; a relief after the
complexity of the display file map. Starting at 22528 the attribute
bytes are stored in the natural ‘printing’ order of the character
locations that they control. In other words the first attribute byte
controls the character location in the top left hand corner, the next
controls the next location to the right on the same line, and so on to
the end of the line. This pattern then repeats for each line to the end
of the screen. To see the form of this storage scheme try the
following

10 FOR XI=22827 TO 23295
20 POKE 1,0
30 MEXT X

which stores the attribute code for black paper in each attribute byte
in sequence. You should be able to see that unlike the previous
programs, which manipulated the display file, each memory
location POKEd alters a whole character location. The equation for
the address of the attribute byte that controls the character location
at line L column C is:

22528+32*L+C

This is a much more useful equation than either of the two given for
the display file. In particular it can be used to change the attributes
controlling a character location without changing the pattern of ink
and paper dots on the screen. Try, for example,

80 An Expert Guide to the Spectrum

10 DEF FMa(C,L)=22528+32xL.+C

20 FRINT AT 10,53"this is & message"

30 LET L=10

40 LET C=INT{(RNDx32)

50 LET A=INT(RNDxZ54)

60 FOKE FMa(C,L),A

70 GOTO 40
This program first prints a message on the screen, then uses the
function FNa to POKE (line 60) random attribute codes into the
attribute bytes that control the line the message is printed on.

PEEKing the display file - POINT and SCREENS$

Either of the two equations given earlier could be used to examine
the current state of a bit in the display file by PEEKing the correct
memory location. However, the address calculation involved is so
complicated it’s always faster to use the ZX BASIC function POINT.
Toimplement POINT (x,y), ZX BASIC calculates the address of the
memory location that controls the dot at x,y, then returns the value
of the bit within it that controls the dot. So POINT(x,y) returns 0 if
the dot is paper, and 1 if the dot is ink. It is unusual for the behaviour
of a program to depend on the state of a single dot on the screen, and
this limits the usefulness of the POINT function. If you need to test
the state of a number of dots then the multiple use of the POINT
function tends to slow things down rather a lot.

It is usually more important to discover what character is stored at
any given location. Fortunately ZX BASIC has a function which
solves just this problem. The function SCREENS$(line,column)
returns the character displayed at the screen location line,column.
This is achieved by examining each of the 64 dots that make up the
character location in question and comparing them to the shape
definitions stored in the Spectrum’s character table. The character
table is described in a later section, but essentially it is an area within
the ZX BASIC ROM that contains the pattern of ink and paper dots
that forms the shape of each character. The SCREENS function is
easy to use, but it is important to be aware of one or two
peculiarities. For example, as it works by comparing dot patterns
within a character location with character definitions, it is only
concerned with the shape that the dots form, not how the shape was
produced. So, for example, if the shape of a letter A is produced by
plotting individual dots using the PLOT command, or by PRINT

The Video Display 81

“A” the SCREENS function will still return “A”. Another feature of
SCREENS is that it checks for a character and its inverse. This
means that the letter “A” will be returned if the shape is made by ink
dots or by paper dots. Thus a solid block of ink dots will cause
SCREENS to return a space character! Finally SCREENS will not
recognise user-defined characters that are present on the screen.

Attribute codes and ATTR

In a previous section the attribute codes were POKEd to the
attribute file, but unless you know exactly how the value stored in
the attribute byte effects the character location it refers to, this is of
very little practical use. The eight bits that make up an attribute code
are used in the following way

b7 b6 bS b4 b3 b2 bl b0
[f |b ﬁaper ‘ ink

where f stands for flash, b for bright and ‘paper’ and ‘ink’ are the
usual colour codes in the range 0 to 7. For example, if f is set to one,
then the character location that the attribute code controls will flash.
Using this information, and the weights associated with each bitin a
binary number (see Chapter 1), gives

128*f+64*b+8*paper+ink

for the value of the attribute code that produces the desired ink and
paper colours and a flashing or bright character. So if you want a
steady (f=0), bright (b=1), black ink (ink=0) and a white paper
(paper=7) character you would POKE 64+7*8 into the attribute
byte that controls the character location.

Just as the attribute file can be POKEd to change an attribute
code, it can also be PEEKed to discover the current attribute code.
In fact, it is unnecessary to calculate the address in the attribute file;
the ZX BASIC function ATTR(line, column) returns the value
stored in the memory location that controls the character location at
line, column. Separating out the different parts of the attribute code
to discover, for example, what paper colour is in effect is not
difficult. To make it even easier the following user-defined functions
can be used

DEF FENf(L,C)=INT(ATTR(L,C)/128)
DEF FNb(L,C)=INT(ATTR(L,C)-INT(FNf(L,C)*128)/64)

82 An Expert Guide to the Spectrum

DEF FNp(L,C)=INT((ATTR(L,C)~INT(ATTR(L,C)/ 64)*64)/8)
DEF FNi(L,C)=ATTR(L,C)-INT(ATTR(L,C)/8)*8

where FNf returns the value of f, FNb returns the value of b, FNp
returns the paper colour code and FNi returns the ink colour code.

The video driver

The previous sections have explained how the Spectrum’s video
display works in terms of the use and organisation of the display and
attribute files. ZX BASIC insulates the user from considerations
such as these by providing the PRINT statement. Within the ZX
BASIC ROM there are machine code routines that examine the data
items in a PRINT statement and store patterns of bits in the video
RAM to produce the characters that represent the data. For
example, PRINT “A” causes the machine code routines to store the
dot pattern for the letter A in the character location where the
printing cursor is currently positioned. For a numeric variable, the
process of representing its value on screen is a little more
complicated. For example, PRINT A causes the machine code
routines to convert the number stored in A to a sequence of decimal
digits, which are then displayed on the screen. Remember that the
number stored in A, or any other numeric variable, is stored in
binary form, and has to be converted to a string of decimal digits
before it can be printed. In this sense PRINT A produces the same
set of actions as PRINT STRS$(A) (the function STRS$ converts a
numeric value to a string of digits).

The most obvious way to implement the machine code routines
that execute the PRINT statement would simply be to write
whatever was necessary to display each type of data on screen.
Fortunately the authors of the ZX BASIC ROM thought before
they started to program! As a result the software that implements
the PRINT statement is split into two parts, the PRINT routines
and the video driver.

The PRINT routines are responsible for converting each data item
in a PRINT statement into a sequence of ASCII character codes.
The video driver accepts these ASCII codes and is responsible for
producing the pattern of dots on screen that represents each of the
printable characters (see Fig. 6.2.) Itis this separation into two parts
that makes the Spectrum’s I/O system so flexible. By the use of
streams and channels (see Chapter 5) it is possible to associate a
different device driver with the print routines and know that all it has

The Video Display 83

! ASCII codes
Video =5, PRINT
driver routine
Screen PRINT ‘print list’

memory

Fig. 6.2. Two separate software routines - the PRINT routine and the video
driver - transfer data from RAM to the screen memory.

to handle is a sequence of ASCII codes. In the same way it is possible
to send streams of ASCII codes to the video driver from another
source. Without this separation it would be extremely difficult to
redirect 1/0.

On another level the use of ASCII codes as a means of
communication between the PRINT routine and the video driver
opens up a number of programming techniques. Printable
characters, such as letters and digits, are not the only sort of item
that occurs in a PRINT statement; there are also the control items,
such as TAB, AT, INK and PAPER. Even these non-printable items
are converted to ASCII codes by the PRINT routine before being
passed on to the video driver. The ASCII codes corresponding to
these non-printable items are referred to as control codes, because
although they don’t produce anything on the screen, they do control
or affect the display. Following a control code, the next one or two
ASCII codes may be interpreted as ‘parameters’ that govern the
exact result produced. For example, the non-printable item INK 7 is
converted by the PRINT routine to the control code 16 (standing for
INK) and then the ASCII code 07 to represent the colour code.
Notice that the colour code is sent to the video driver as ASCII code
07, not the digit 7, i.e. as CHR$(07) rather than CHR $(55). A table
of control codes and their parameters can be seen below.

Non-printable item code parameters
and action

, (move to next

print zone) 6 None
cursor left 8 None
cursor right 9 None
ENTER 13 None
INK ¢ 16 c

84 An Expert Guide to the Spectrum

PAPER ¢ 17 c
FLASH f 18 f
BRIGHT b 19 b
INVERSE i 20 i
OVER o 21 0
AT y,x 22 y X
TAB x 23 x0

Notice that both AT and TAB are followed by two parameters, even
though TAB only makes use of the first. There are control codes
other than the ones listed in the table, but these extra codes are used
by the program editor.

As the video driver receives nothing but a sequence of ASCII
codes from the PRINT routine, it doesn’t matter how they are
generated. For example

PRINT INK 6
and
PRINT CHR$(16);CHR$(6);

both produce the same sequence of ASCII codes, so they have the
same effect! By including control code sequences in strings it is
possible to make messages that are self-positioning, or automati-
cally set their own colours etc. For example in the following
program

10 LET Mé=CHR$(22)+CHR$ (10)+CHR$(E)+"This
message always prints in the same place"
20 FPRINT M$
30 GOTO 20
the string M$ includes the control codes for AT 10,5, so it is always
printed at the same place no matter where you try to print it!

The video driver can be used directly by the Z80 assembly
language programmer to perform all the display operations for
which the ZX BASIC programmer uses PRINT. To access the video
driver, all that is needed is a RST 16 command after loading the A
register with the ASCII code of the character that you want printed
(or of the operation that you want performed). For example, to print
the letter A you could use

LDA #65
RST 16

The Video Display 85

which first loads the A register with the ASCII code for A, and then
does a restart (RST) to the video driver. (Note the machine code for
RST 16 is 215 decimal.)

Finally, before moving on to consider other features of the
Spectrum’s video display, it is worth pointing out that the video
driver not only changes the display file when a character is printed
but also stores the current attribute code in the associated attribute
byte. Commands such as INK and PAPER that occur outside a
PRINT statement use the video driver. The only display commands
that do not use the video driver are the CLS command and the high
resolution graphics commands PLOT, DRAW and CIRCLE.

The character tables

An important part of the Spectrum’s text-generating software is
formed by the two character tables. These are used to hold the dot
patterns of the various printable characters. Most of the Spectrum’s
character definitions are held in the main character table in ROM.
As the table is in ROM it is not possible to change any of the
definitions. However, as the address of the start of this table is held
in the system variable CHARS it is possible to move the entire table
to RAM and so give the Spectrum a completely user-definable
character set! (see Chapter 7). The second character table is used to
hold the definitions of the user-defined characters, and as you might
expect, this is normally stored in RAM. However, the start address
of this table is also held in a system variable UDG, and it, too, can be
moved to start at any desired address.

The format of the data used to define the shapes of all the
Spectrum’s characters is identical to that used for the user-defined
characters. That is, the 64 dots that make up a character are stored in
eight memory locations. Each memory location holds eight bits that
represent the state of the eight dots that make up a single row of the
character. With this in mind, it is not difficult to see that if the start
of the main character table is START, the eight memory locations
that contain the definition of CHR$(I) are given by:

STARTH8*(1-32)

(The first printable character is CHR$(32).) This equation can be
used to print out the dot pattern of any letter:

86 An Expert Guide to the Spectrum

10 DEF FNt(O)=Z256+FEEK (23606 +256XPEEK
(23607

20 INFUT C$

30 LET I=CODECC$(1)>

40 LET A=FNt()+8x{(T-32)

50 FOR K= TO A+7

60 LET D=FEEK(K)

70 GOSUE 1000

80 IF LEN(E$)<8 THEN LET B$="0"+E$
GOTO 80

20 FRINT E$

100 NEXT K

110 GOTO 20

1000 LET E¢g=""

1010 LET E=D-INT(D/Z2)xZ

1020 IF BE=0 THEN LET BE$="0"+E4$
1030 IF B=1 THEN LET B$="1"+E$
1040 LET D=INT{D/2)

1050 IF D=0 THEN RETURN

1060 GOTO 1010

Line 10 gives a function FNt() which returns the start address of the
main character table. (The address stored in the system variable
CHARS is in fact 256 less than the address of the start of the table.)
The rest of the program simply PEEKs the eight memory locations
that store the dot pattern for the character in C$(1), and print the
pattern in binary.

The same program can be used to discover the shape of any of the
user-defined characters by changing line 10 to:

10 DEF FNt Q) =FEEK(23675)+286XPEEK(23676)
This returns the start of the user-defined graphics table by PEEKing
the system variable UDG. Line 40 also has to be changed to:

40 LET A=FNtO+8X(T-144)

There are many direct uses for the character definition tables, and
some of these will be explored in the next chapter. The key facts to
remember are that the start address of both tables can be altered,
and if the tables are stored in RAM the character definitions can be
changed using POKE.

The Video Display 87
The video system variables

The video system variables are involved in a wide range of tasks
associated with the Spectrum’s video display. The variables
CHARS (23606) and UDG (23675) have already been described in
the last section as holding the start of the main character table and
the user-defined character table respectively. Other variables of
interest include:

CO ORDS (23677 and 23678)

This system variable gives the x co-ordinate (in 23677) and the y co-
ordinate (in 23678) of the last point plotted by a high resolution
command. By PEEKing these two locations the current position of
the graphics cursor can be found. For example, if you want to draw a
line from the current position of the graphics cursor to the absolute
location X,Y then use:

DRAW X—-PEEK(23677),Y—PEEK(23678)

This works by PEEKing the current location of the graphics cursor
and working out the difference between it and the desired position.

S POSN (23688 and 23689)
These two locations are used to hold the current location of the text
cursor. To be precise, the current position of the text cursor is:

column number = 33—PEEK(23688)
line number = 24—-PEEK(23689)

DF CC (23684 and 23685)

DF CC holds the same information as S POSN - the current
position of the text cursor — but instead of its line and column
number, DF CC holds the corresponding address within the
display file.

SCR CT (23692)

This system variable holds a ‘countdown’ to the next occurrence of
the question “scroll 7”. Its value is always one more than the number
of scrolls that will be performed before the next “scroll 7" message
appears. Repeatedly POKEing this system variable with 255 while a
program runs will ensure that the message never appears.

88 An Expert Guide to the Spectrum

ATTR P and ATTR T (23693 and 23695)

These two variables hold the current value of the permanent and
temporary attribute codes respectively. In other words, if there are
no attribute commands within a PRINT statement then the value
stored in ATTR P is used to set the attribute bytes corresponding to
each of the character locations used. However, if there are any
attribute commands within a print statement, then the value in
ATTR T is set accordingly, and used in place of ATTR P for the
duration of the PRINT statement.

MASK P and MASK T (23694 and 23695)

These two system variables hold the permanent and temporary
transparent attributes. Normally whenever a character is printed
either the attribute code in ATTR P or ATTR T is stored in the
corresponding attribute byte. However, if attribute 8 is used in any
of the attribute commands (for example INK 8) then that part of the
attribute byte is left unchanged. MASK P and MASK T are used to
record which attributes are either permanently or temporarily set to
transparence. The coding is such that any bit that is a one in MASK
P or MASK T indicates that the corresponding bit will be taken
from the existing attribute code rather than ATTR P or ATTR T.

BORDCR (23624)

This system variable holds the attribute code used in the lower half
of the screen. The ink part of the attribute code is also used to set the
border colour.

Creative video

Although much has been explained in this chapter about the
workings of the video display, a great many of its features have not
been explicitly discussed. Most of these are obvious once you have
understood the overall workings of the display, and the next chapter
presents a number of examples that use knowledge of how the video
display works. Much the best way of coming to terms with the
Spectrum’s video display is to go ahead and use it creatively.

Chapter Seven

Video Applications

This chapter presents a number of examples of the less than obvious
uses of the Spectrum’s video display. A number of the examples
could form the basis of routines suitable for use in applications
programs. However, their main value is to suggest the range of
things that can be achieved with the Spectrum’s display without
changing a single chip!

Functional characters

Although it is obvious that the user-defined character table is
nothing more than a sequence of memory locations like any other,
there is a tendency to think about altering it using only the standard
statement:

POKE USR “char”+n,BIN bit pattern

This is such a familiar statement that it is worth examining its
components more carefully. The parameter of the USR function is
normally the address of a machine code program (to which USR
transfers control). However, when the parameter of USR is a string
expression, such as USR “char”, it works out the address of the first
memory location in the user-defined character table for ‘char’. You
should be able to see that this means USR “char”+nevaluates to the
address of the memory location that holds the bit pattern of row n of
the user-defined character ‘char’. For example, if you try

PRINT USR “A”

the Spectrum will print the address of the first memory location in
the user-defined character table. The rest of the statement used to
define the dot pattern should now be obvious. The result of the
POKE is to store the bit pattern that is the parameter of the BIN in

90 An Expert Guide to the Spectrum

the memory location that defines row n of the user-defined character
‘char’.

Of course, once you have the start address of the eight memory
locations that control the dot pattern of a user-defined character you
can change them in any way you like. For example, try

10 LET A=USR "b"

20 FOR I=0 TO 7

30 FOKE A+L,INT(RNDXZE6)

40 NEXT X

50 FRINT AT 10,103CHRS 1453

60 GOTO 20
which produces a moving explosion character. Line 10 finds the
start address of the definition of user-defined character “b”, or
CHRS 145. Lines 20 to 40 POKE random values as the definition of
each row of the character, and line 50 repeatedly PRINTSs the new
‘random’ shape. (CHRS$ 145 is used to avoid any ambiguities in the
program.)

This functional definition of a random explosion character can be

extended to include new characters that are simple functions of
existing characters. For example, try

10 LET A=USR "a"

20 LET B=USR "b"

30 FOR I=0 TO 7

40 LET D=FEEK(A+I)

90 FORE BE+7-1,D

60 NEXT I

70 FRINT CHR4$ 144,CHR4 145

which will define CHRS 145 as an upside-down version of CHRS$
144! The key to this program is to be found in lines 40 and 50. Line 40
PEEKs the definition of row I of CHR$ 144 and then line S0 POKEs
it into row 7—1 of CHRS$ 145. Similar methods can be used to define
characters that are reflections and rotations of other characters.

Changing the character set

As the system variable CHARS holds the address of the start of the
standard character table (less 256) it is quite easy to move the entire
character table to RAM and then change any or all of the
definitions. For example

Video Applications 91

10 CLEAR 3 »TER-1024

20 LET A=25&4+PFEFE Z23406+254XPFEK 23607
30 LET Lu,Lxgw 1024+1

40 FOR I=0 TO 9%

50 FOR J=0 TO 7

&0 LET D=FEEEK(A+IX8+.0)

70 FOKE B+IX8+7-d,D

80 MEXT o

90 MEXT T

100 FOKE 23407, INT((B-254)/254)

110 FOKE 23406, (B~256)~INT((RB-254) /254)R206

will transfer the entire standard character table to RAM while
changing the order of each row of dots to invert each character. You
should be able to recognise the components of this program. Line 10
reserves 1K of memory which is more than enough for the character
set. If you have a 48K Spectrum then you can change 32768 to
2%32768. Line 20 finds the location of the character table in ROM,
and line 30 stores its new position in B. Lines 40 to 90 do the actual
job of moving the character table, and you should recognise lines 60
and 70 as being very similar to the inversion of the user-defined
characters in the last section. Finally, lines 100 and 110 POKE the
new value for the start address of the character table.

It is a good idea to SAVE this program before running it: it is
more than a little difficult to make any changes to it with the entire
character set inverted. Running the program a second time will not
restore the character set to its original form; instead it mixes it up
still further!

Internal animation

Although each of the character tables is organised into groups of
eight memory locations that correspond to the shape of a single
character, there are times when it is worth thinking about the table
as a whole. For example, if the user-defined character table is set up
so that each character is a letter in a message, then the message can
be printed using a smooth scrolling motion by repeatedly printing
the first user-defined character and moving the start address of the
table itself. For example, if the system variable UDG contains the
usual address of the first memory location of the user-defined
character table, then PRINT CHRS$ 144 will display the first user-
defined character. However, if the value in UDG is increased by one,

92 An Expert Guide to the Spectrum

PRINT CHRS 144 will display the last seven rows of the first user-
defined character and the first row of the second. By continually
incrementing the value in UDG, the eight memory locations that
define the shape of the first user-defined character can be made to
move through the original table rather like a viewing window:

10 COSUE 1000

20 FOR I=0 TO Z0x8

30 FRINT AT 10,103CHRE 1443

40 FOKE UDG,D+I-~INT((D+I)/256)K256
G0 FORKE UDG+1,INTC(D+I) /2560

60 NEXT X

70 GOTO0 2

1000 LET UDG=23675
1010 LET D=FEEK UDG+2S6XFEEK(UDG+1)
1020 RETURNM

This program will produce a smoothly scrolling message consisting
of the default user-defined characters, i.e. A to U. Subroutine 1000
stores the start of the user-defined character table in D. The FOR
loop at 20 to 60 PRINTS the first user-defined character and then
moves the start of the table up by one memory location.

This technique of moving the start of a character table can be used
to produce remarkably smooth internal animation using nothing
but ZX BASIC. For a practical example of this see the ‘Fruit
Machine’ game in The Spectrum Book of Games by Mike James, S.
M. Gee and Kay Ewbank, published by Granada.

Free characters

The ‘free’ in this headline refers to the positioning of the characters
rather than the discovery of any extra ones! You now know how the
display file controls the dot pattern on the screen, so you should be
able to see that the restriction of characters to character locations is
more a convenience than a necessity. In fact, the only real reason for
not allowing characters to be placed at any point specified by high
resolution co-ordinates is that the attribute bytes control whole
character locations. If you are not worried about a mismatch
between the area a character occupies and the area an attribute byte
controls, then it is easy to produce characters anywhere on the

Video Applications 93

screen. For example, the following program prints an “X” in the
usual way and then ‘plots’ the number “2” as a superscript, so
producing the familiar notation for x squared.

10 FRINT AT 10,103"X"
20 LET X=9%5

30 LET Y=99

40 LET E$==tz

90 GOsUE 000

60 STOF
5000 LET A=2546+FEEK 23606+256XFEEK 23607
5010 LET A=A+8X(CODE C$-32)

G020 FOR XI=0 TO 7

3030 LET D=FEEK(A+I)

G040 FOR J=0 TO 7

G050 LET BE=D-INT(D/2)x2

G060 LET D=INTC(D/2)

070 IF E=1 THEN FLOT X,Y

5080 LET X=X-1

G090 NEXT J

5100 LET Y=Y-1

G110 LET X=X+8

G120 MNEXT I

9130 RETURN
The actual work is carried out by subroutine 5000, which will plot
the character stored in C$ at the position in X and Y. (X and Y are
the co-ordinates of the top right hand corner of the 8 by 8 square of
dots that constitutes the character). The principle involved is simple.
The bytes that define each row of the character in question are
retrieved one after the other. Each byte is broken down into its
pattern of zeros and ones by the inner FOR loop 5040 to 5090, and
an ink dot is PLOTted if the bit stored in B is 1. The rest of the
subroutine is concerned with moving the value stored in X and Y on
to form the 8 by 8 square of dots.

For another example of the use of this subroutine change the main

program to:

10 LET A%="A MESSAGE"
20 LET X=10

30 LET Y=170

40 FOR K=1 TO LEN(A$)
G0 LET Cé=A%$(H)

60 COSUE 5000

94 An Expert Guide to the Spectrum

70 LET X=X+4

80 MEXT K

?0 STOP
This uses subroutine 5000 to print the message stored in A$
diagonally down the screen. The only extra information you need to
understand how this program works is that after subroutine 5000
has finished, the variables X and Y contain the co-ordinates of the
bottom right-hand corner of the character just plotted.

Variable size characters

A very small change to the method used to produce characters at any
location will allow for characters of any size at any location! The
basic principle is to PLOT more than one point for each bit in the
character definition. If you make the following changes to the last
program you will see a range of character sizes:

10 LET Af="aABCDE"
20 LET X=30
35 LET 8X=53LET 8Y=5
65 LET X=INT(X+8X/2)
66 LET GX=8X-1
67 LET 8Y=8Y-1
S070 IF BE=1 THEN GOSUE 4000
5080 LET X=X-8X
5100 LET YsY--85Y
5110 LET XaX+8Xx%8

000 FOR M=1 TO &Y
6010 FOR N=1 TO &X
020 FLOT X+N,Y+M
6030 NEXT N
6040 MEXT M
6050 RETURM

Subroutine 6000 plots a square or a rectangle of dots SX wide by SY
high, and thus SX and SY are the X and Y scale factors respectively.
The modifications to the main program call subroutine 5000 with a
decreasing pair of scale factors to plot a diagonal line of characters,
each one smaller than the last.

Video Applications 95
Smooth screen scrolling

One of the tasks carried out by the Spectrum’s video software is the
vertical scrolling of the screen. This apparently simple operation is
in fact much more involved than you might imagine. In principle, all
the software has to do is move each group of eight dot rows that
constitute a line of characters to the position in memory formerly
occupied by the dots that formed the line of characters immediately
above. In addition to moving the dots in the display file, the scroll
software must also shift the attribute bytes up by the equivalent of
one text line in the attribute file. If you recall the odd layout of the
display file, you will start to appreciate the difficulties in moving the
data to perform ascroll. As the display file is stored in three sections,
each consisting of eight character lines, the real difficulty comes
from having to move the top line of each section to the bottom line of
the next storage section. (See Chapter 6 if you have forgotten the
details of the display file’s layout.) All in all, a vertical scroll is
difficult enough to leave to the Spectrum’s built-in software.
However, a horizontal scroll is much easier.

There are many applications programs, especially games, that
involve moving graphics or text smoothly to the left or the right. For
example, a typical games program might produce the effect of an
attack ship flying over a landscape by holding the position of the
ship fixed and ‘scrolling’ the landscape horizontally. A horizontal
scroll by one dot (moving the display, or an area of the display, to the
left or right by one dot) is not difficult, but it does need some Z80
assembly language.

To scroll the screen right by one dot all you have to do is to start at
the left-hand side of each row of dots and move them all along by
one dot. The dot that ‘falls off the end’ of the row is lost, and a paper
dot is shifted into the first position of the row. As long as you start
from the beginning, the display file is organised so that each group of
32 bytes holds the dot pattern for a complete row. This means that
shifting a row can be achieved by shifting the contents of the 32 bytes
‘up’ by one bit. That is, the contents of the first memory location in
the display file are shifted one bit to the right so that bl becomes b0,
b2 becomes bl and so on. A zero has to be supplied as the new value
of b7, and the value of b0 has to be saved so that it can be shifted into
b7 of the next memory location. The same operation is repeated on
the second memory location, and so on to the last memory location
involved in storing the row of dots. Each time, all bits in
the memory location are moved one place to the right and b0

96 An Expert Guide to the Spectrum

from the previous memory location is moved into b7. This opera-
tion on a single memory location is called a ‘rotate right’ in Z80
assembly language, so shifting the screen one bit to the left is a
matter of repeatedly applying a rotate right operation to each of the
32 memory locations that store the pattern of a row of dots.

An assembly language routine to shift the top third of the screen
(text lines 0 to 7) one dot to the right is given below.

address assembler code comment

23296 LD HL,16384 33,0,64 load the HL register

23299 LDA 63 62,63 load A with 63

23301 LOOPI LDB 32 6,32 load B with 32

23303 ANDA 167 clear the C flag

23304 LOOP2 RR (HL) 203,30 rotate A right 1 bit

23306 INC HL 35 add one to HL

23307 DINZ LOOP2 16,251 B=B—1 and loop if
B<>0

23309 DECA 61 A=A-1

23310 JR NZ, LOOP1 32,245 loop if A<>0

23312 RET 201 return to BASIC

This routine can be loaded into the printer buffer and called using
USR 23296 each time the screen is to be scrolled by one bit. In the
second line, LDA 63 sets the number of dot rows that are shifted - in
this case 63 plus one, i.e. 64. Although the routine has been hand-
assembled as if it was going to be run starting at 23296, it is in fact
position independent and can be loaded anywhere in memory. The
following BASIC program demonstrates the routine:

10 DATA 33,0,64,62,63,6,32,167,203,30,35,
16,251,61,32,245,201

20 FOR I=23296 TO 23312

30 READ D

40 FOKE I,D

90 NEXT I

60 FRINT AT 7,03"ABCDE"
70 FRINT AT 8,03"AEBCDE"
B0 LET A=USR 23296

20 GOTO 80

Video Applications 97

Lines 10 to 50 load the machine code into the printer buffer. Lines 60
to 90 PRINT something on the screen and then use the routine to
shift the message at line 7 off the screen.

As an example of how this horizontal scroll routine could be used
in a game try substituting

60 LET Y=120
70 LET %=1
80 IF RND<,2 THEM LET S=-1x8
0 IF Y=11%5 THEN LET 8=i
100 IF Y=174 THEN LET &=
110 LET Y=Y+8
120 ELOT 0.,)
130 FRINT AT 2,103"x";
140 LET A=USR 23296
150 GOTO 80

1

in the previous program. This draws an asterisk in a fixed position
and a ‘landscape’ which is shifted across the screen. This creates the
impression of an asterisk ‘flying’ through the landscape in a way that
would be impossible to achieve using ZX BASIC alone.

Conclusion

The examples in this chapter have all been short enough to make
them easy to try out. However, they are also long enough to
illustrate the ideas involved and to make them worth building into
your own programs. For example, the horizontal scroll program
could easily be turned into a good-quality action game, with no
reason to use any more assembly language than the USR routine
supplied. On the other hand if your interest doesn’t lie in games the
same routine can be used to plot moving graphs that imitate the
display on an oscilloscope.

No matter what you might have been told, computing is an
experimental subject, and experiments lose much of their value if
you only read about what is supposed to happen! So it is important
to incorporate these examples into your own programs and
experiment with them.

Chapter Eight
Tape, Sound and the
Printer

The Spectrum’s cassette interface and its limited sound generator
use the same hardware within the ULA. However, the key factor
that links together all three of this chapter’s subjects - the cassette
interface, the sound generator and the ZX printer — is the presence of
standard software within the ZX BASIC ROM to control them.
Loosely speaking, all three come under the heading of ‘standard’
I/O devices. Apart from these tenuous connections there is not
much carry-over from one device to the next, and as a result this
chapter is in three main parts corresponding to the tape system, the
sound system and the ZX printer.

The tape system

One of the best features of the Spectrum is its remarkably reliable
tape system. It is not complex, either; it seems to be attention to
detail that produces the reliability. There is not very much that can
be done to change the way the tape system works, or to add extra
facilities, without becoming involved in excessively large Z80
assembly language programs. This is not to say that things cannot be
changed or improved,; it is just that there is nothing worth tinkering
with. If you are planning to do anything with the tape system, then
what you need to know depends very much on what you have in
mind. For example, if you are interested in writing new tape
software for the Spectrum, or if you want to read tapes produced by
other machines, then you will need to know about the way that the
hardware is organised. If you are going to try to read Spectrum tapes
using other machines, then the format used to write the data is
important. On the other hand if you are producing Z80 assembly
language applications programs, then knowledge of the machine
code routines that perform the reading and writing of tape files is

Tape, Sound and the Printer 99

again crucial. To cover this range the description of the tape system is
divided into three parts: hardware, tape format and software details.

Tape hardware

The main features of the tape hardware have already been described
in Chapter 2, but without any attempt to explain how they are used
to produce tape storage of data. Both the line that sends data to the
cassette (MIC), and the line that receives data from the cassette
(EAR), are connected to the same pin (28) of the ULA. This pin of
the ULA responds to I/O port address 254 as already described in
Chapter 2.

Writing to 1/O port 254 sets the cassette line MIC depending on
the state of bit 3. If bit 3 is 0 then the output voltage is 0.75 volts. If
bit 3 is | then the output voltage is 1.3 volts. By alternately writing a
0 and a | to b3 of port 254 a square wave can be sent to the cassette
(see Fig. 8.1). This square wave is recorded as an audio tone with a

———\ — —1.3volts

.75 volts
Fig. 8.1 The square wave sent to cassette line MIC from 1/0 port 254 by
setting b3 alternately to O and1.

fixed volume and a frequency that depends on the time that bit 3
remains constant. The longer the time interval between ‘flips’ of bit
3, the lower the pitch of the tone. For example, the BASIC program,

10 0UT 254,90

20 OUT 254,8

30 GOTO 10

changes bit 3 of port 254 from 0 to 1, and the resulting square wave
can be recorded by pressing play and record in the usual manner.
Notice also that while this program is running the border colour
changes to black. This is because b0, bl and b2 of output port 254
control the border colour, and both OUT instructions set these bits
to 0. The frequency of this tone is very low, because ZX BASIC
cannot be used to change the state of the bit often enough to produce
a high frequency. However, using Z80 assembler there is no problem
in changing the state of bit 3 fast enough to produce tones that are
above the range of normal hearing! The lowest level tape software

100 An Expert Guide to the Spectrum

uses this simple method to produce a number of tones that code the
data onto the cassette recorder.

If a tape with audio tones recorded on it is played back while
connected to the Spectrum, the level of the input determines the
state of b6 of input port 254. In fact the input level determines b6 of
any input port corresponding to an address with b0 set to 0 (see
Chapter 2). If the voltage on the input line (EAR) to the Spectrum is
low, then b6 is 0; if the voltage is high, then the bit is 1. (In practice
the Spectrum sets the output line controlled by b3 high before
reading the input line, and so the tape recorder signal pulls the
normally high input low.) To see the way that the signal from the
tape recorder affects b6 of the input port try:

10 0UT 254,8

20 FPRINT IN 254
30 FOKE 23692,255
40 GOTO 20

Line 10 sets the output to MIC high before line 20 reads and
PRINTSs the state of port 254. Line 30 simply stops the ‘Scroll?”
message from periodically halting the program. If you play a
recorded tape while running this program you will see the numbers
255, corresponding to b6 high, and 191, corresponding to b6 low,
printed on the screen. Notice that pressing keys on the keyboard also
alters the value returned by IN 254.

The signal that results from playing back a recording of a square
wave is often far from being a good approximation to the original
square wave (see Fig. 8.2). However, the time between high-to-low

NN

Fig. 8.2 Typical signal from a cassette recorder playing back the square wave
shown in Fig. 8.1.

and low-to-high changes is likely to be fairly close to the original. In
other words, the pitch of the square wave is likely to be the same
unless the speed of the tape recorder has changed (because, for
example, its batteries have run down). Thus it is the time between the
changes in signal level that the Spectrum uses to retrieve the data
recorded on tape.

Tape format

All spectrum tape files are recorded as two blocks of information,

Tape, Sound and the Printer 101

the header and the data block. The header is a short burst of audio
tone that is used to store information concerning the data stored in
the data block that follows. For example, the header is used to store
the file name and the number of bytes in the data block. The exact
format of the data stored in the header block will be described later.

Each type of block begins with a burst of leader tone: roughly 5
seconds of leader for a header block, and around 2 seconds for a data
block. Leader tone is a square wave with 619.4uS (1uS=one
microsecond or one millionth of a second) between each change of
state (see Fig. 8.3). This corresponds to a frequency of around

i 1
| 1
619.4us g 210us | 488.6us | 244.3us
2168T h 735T | A710T 855T
1 AT ; il
- - > - -
2168T | 667T 1 710T | 855T
619.4us 1190.6us | 488.6us 1244.3us
I |
leader tone | Sync | one pulse | zero pulse
|

|
| r#———data tones ———8M88»

Fig. 8.3. The signais used for tape storage by the Spectrum, showing timings
in microseconds and the number of Z80 T states per pulse.

807Hz. The end of the leader tone is marked by the occurrence of a
pulse of very much shorter duration - the sync pulse. The sync pulse
is low for 190.6uS and high for 210uS. Following the sync pulse, and
without any break, comes the first data pulse. The length of a data
pulse depends on whether it representsa0 ora 1. Ifit represents a 0 it
is low for 244.3 uS and high for the same amount of time. If it
represents a | the pulse lasts for exactly twice as long. All of this
timing information can be seen in Fig. 8.3 (along with the number of
780 T states for which each pulse lasts).

Using this information it should be possible to write an assembly
language program on almost any machine to enable Spectrum tapes
to be read or written. The process of reading the data back in is made
very reliable on the Spectrum by the use of a range of times that are
acceptable for each type of pulse. The data pulses that follow the
sync pulse form groups of eight bits that correspond to the bytes that
are being saved or loaded. In other words, the first eight pulses that
follow the sync pulse form the first byte of data, the next eight the
second byte, and so on to the end of the block. The only other
information necessary is the format of the bytes that form the
header, and how these relate to the data block.

102 An Expert Guide to the Spectrum

A header is composed of 19 bytes of data, but only 17 of these are
supplied by the user. The first byte of the header or of the data block
isa FLAG byte, generated by the SAVE routine to mark the difference
between a header and a data block. The FLAG byte is 0 if the
following block is a header, and 255 if the block contains data. The
final byte of the header or of a data block isa parity byte whichis used to
detect any loading errors that might have occurred. These two bytes,
the flag byte at the start of the block and the parity byteattheend of the
block, are added by the SAVE softwareto both headerand data blocks,
thus making them two bytes longer than you might expect. The use of
the 17 bytes that form the header proper can be seenin Fig. 8.4. The first

1 10 e 2 2
START Pr.
TYPE. FILE NAME LENGTH LINE No LENoGg1.'H
OR ADDRESS

Fig. 8.4. Format of a header block.

byte is used to record the type of data block, as follows:

TYPE type of data block

0 BASIC program

] Numeric array

2 String array

3 Machine code or screen dump

The next 10 bytes hold the file name. Following the file name come
the two bytes that record the length of the data block that follows.
The use of the remaining four bytes depends on the type of data
block that the header describes. If TYPE is 0 then bytes 14 and 15
hold the line number for an auto start BASIC program, and bytes 16
and 17 hold the number of bytes in the program part of the file.
(Remember that SAVEing a BASIC program saves both the
program area and the data area.) If TYPE is 1 or 2 then byte 15 is the
only one used, and this holds the name of the array. If TYPE is 3
then only bytes 14 and 15 are used, and these hold the address from
which the data bytes should be loaded.

Following the header comes the data block that it describes. As
already mentioned, this contains two more bytes than recorded in
the length information in the header, the leading type byte and the
trailing parity byte. Following the type byte, each byte in the data
block can be regarded as an ‘image’ of the portion of memory that
was saved.

Tape, Sound and the Printer 103

The only detail left to describe is the exact way that the parity byte
is used to detect any loading errors. When either a header or a data
block is saved, each byte that is written out is exclusive ORed with
the parity byte. The parity byte’s initial value is given by the flag
byte. If on reading the data back a parity byte is built up in the same
way, that is by forming the exclusive OR of the current parity byte
with each byte read in, then in the absence of read errors the final
value of the parity byte will be 0. Notice that this assumes that the
initial value of the running parity byte was 0, and that all of the bytes
that are read in, including the flag byte and the final trailing parity
byte, are exclusive ORed with it.

The SAVE and LOAD routines

There are two fundamental machine code routines within the ZX
BASIC ROM that can be used to SAVE and LOAD an area of
memory. As with any ZX BASIC ROM routines there is always the
possibility that their position might move, but for two such
important routines this seems unlikely.

The save routine starts at address 1218 (or 04C2 hex). What it
actually does depends on a number of parameters passed using the
registers:

Register action

DE number of data bytes to be saved
IX address of first data byte

A 0 for header

255 for data block

It is worth noting that this is a low level routine that will save a
memory area without any frills or alterations, apart from the
addition of the leading type byte and the trailing parity byte. In
particular, this routine doesn’t issue any messages about pressing
play and record, and it doesn’t automatically form a header block if
you are using it to write a data block. In fact if you want to write out
a header block you must create a 17-byte area of memory that
contains the 17 bytes of correctly initialised header data, e.g. the file
name, length etc. Unless you have some very special application in
mind, the save routine is generally used twice, once to save the
header and once to save the data block that the header describes.

104 An Expert Guide to the Spectrum

The load routine starts at 1366 (or 0556 in hex) Once again its
action depends on a number of parameters:

Register action

DE number of data bytes to be loaded

IX address that first byte should be stored in
A 0 means load header

255 means load data block

If the carry flag is reset the data will not be loaded into memory;
instead it will be compared to what already exists, i.e. a verify
operation will be performed. Thus the carry flag has to be set to
actually load data. If the wrong type of file is found, then the routine
returns with both the carry flag and the zero flag reset. If a loading
error is detected then both the zero flag and the carry flag are set.
Notice that to use the load routine you have to know how many
bytes you are trying to load. If you are trying to load a header block
then this is easy, as all headers are 17 bytes long. If you are loading a
data block then the only way you can know how many bytes to load
is by reading the header that preceded it.

Using the save and load routines it is possible to write and read
non-standard tape files. For example, you can write a file composed
of a number of data blocks of fixed size that could be read in as and
when they were required. However, the main problem with using the
Spectrum’s tape system in any way that is non-standard is the lack of
cassette motor control. If a file was written as a collection of blocks,
the user would have to start and stop the tape as requested by the
Spectrum!

As an example of using the tape load and save routines, the
following program will print out a list of file types and names. In this
sense it forms a limited catalogue command. The first part of the
program takes the form of an assembly language subroutine that
reads headers from the tape and stores them in the printer buffer.

assembly language code comment
23296 LOOP LD DE,17 17.17,0 length of headerin DE
23299 XOR A 175 clear A

23300 SCE 55 set carry flag

Tape, Sound and the Printer 105

23301 LD IX,23311 221,33,15,91 startofdataareainlX
23305 CALL 1366 205,86,5 CALL load routine
23308 JR NC,LOOP 48,242 jump back if not header
23310 RET 201 return to BASIC

The code of this routine is loaded into the printer buffer. It also
stores the header bytes in the printer buffer starting at 23311. The
following BASIC program uses the routine to read in headers and
print their type and filename:

10 DATA 17,17,0,175,55,221,33,15,91,
205,86,5,48,242,201

20 FOR A=23296 TO 23310

30 READ D

40 FOKE A,D

S50 MEXT A

60 LET A=USR 23296

70 FRINT "TYFE="3}FEEK 233113
80 FRINT " NAME='"};

20 FOR I=1 TO 10

100 FRINT CHR$(FEEK(23311+1))3
110 NEXT X

120 PRINT

130 COTO 40

Lines 10 to 50 load the machine code into the printer buffer. Line 60
uses the routine to load the header bytes and lines 70 to 120 print the
type and name. It would be quite easy to extend the last part of the
program to PEEK more of the header data and provide information
such as length of file and load point.

Sound

The Spectrum’s sound generator is closely connected to the tape
system. The small loudspeaker that produces the sound is connected
to the same output pin of the ULA as EAR and MIC. The only
difference is that the output is controlled by b4 of I/ O port 254. If b4
is 0 then the output voltage is .75 volts, and if b4 is | then the output
voltage is 3.3 volts. Notice that the voltage range obtained by
changing b4 is greater than that used with the tape system. The lower
voltage used by the tape system is insufficient to drive the

106 An Expert Guide to the Spectrum

loudspeaker, and so the tape signals cannot be heard, but the higher
voltage used to drive the speaker does appear at both EAR and
MIC.

The basic method of making a sound is identical to the method
used to generate tones for the tape system. A square wave can be
produced by changing b4 repeatedly from0to | and back to 0 again.
The pitch of the sound that the square wave produces is related to
how fast the wave form repeatedly changes from high to low. Apart
from the pitch of the note, there is nothing else that can be changed.
The volume is fixed by the range of voltages corresponding to the
two states of the square wave, and the overall sound quality is set by
the shape of the wave form. As an example of controlling the
speaker directly try:

10 OUT 254,16
20 0UT 254,10
30 GOTO 10

This program simply changes b4 from | to 0 each time through the
loop. The sound that results is very rough and low pitched due to
BASIC’s lack of speed. Also notice that the border colour changes to
black because b0 to b2 of port 254 control the border colour.
The Spectrum’s sound command, BEEP, does a remarkably good
job of producing an accurate musical scale. This is yet another
example of how the Spectrum’s excellent software makes the most
of a limited hardware feature. If you would like to know more about
the creative use of the Spectrum’s BEEP command then see The
Spectrum Programmer by S. M. Gee, published by Granada.
Improving the Spectrum’s sound is very difficult without the use
of extra hardware. However, the following assembly language

routine will drive the I/ O port directly using a table of values as the
data.

address assembler code comment

23296 LD B,count 06,0 number of bytesintable
23298 LD HL,(table) 237,107,23,91 start of table

23302 LOOPLD A,(HL) 126 load data to A

23303 OR 8 246.8 set MIC bit

23305 OUT (254),A 211,254 send data to port
23307 LD C,time 14,0 load delay time
23309 DEL DECC 13 delay loop

23310 JP NZ,DEL 194,13,91] jump back if C<>0

Tape, Sound and the Printer 107

23313 INC HL 35 next data byte

23314 DEC B 5] end of table?

23315 JP NZ,LOOP 194,691 jump back for rest of
table

23318 RET 201 return to BASIC

23319 DEFW table address of table

The best way to explain the use of this routine is by way of a BASIC
example. White noise is the sort of ‘sshhing’ noise you can hearona
radio that is tuned between stations. It is in fact a roughly equal
mixture of a very wide range of frequencies. The Spectrum can be
made to produce an approximation to white noise by changing the
value of b4 of output port 254 at random. The only problem is where
to get a table of random bits from. Surprisingly, the easiest source of
very nearly random bits is the ZX BASIC ROM itself. The following
BASIC program uses the routine given above to send 256 bytes of
the BASIC ROM to the output port.

10 DATA 6,0,237,107,23,91,126,246,8,
211 ,254,14,0,13,1929,18,%71,35,
G9,194,6,91,201

20 FOR A=23296 TO 23318

30 READ D

40 FOKE A,D

S50 MEXT A

60 FOKE 23319,0

70 FOKE 23320,2

80 FOKE 23297,25%5
90 FOKE 23308,128
100 LET A=USR 232%6é
110 GOTO 100

The first part of the program loads the machine code into the printer
buffer. Lines 60 to 90 set up the parameters used to control the
routine. Before using the routine, memory locations 23319 and
23320 should be set to hold the address of the start of the data table.
Memory location 23297 should be set to the number of data bytes in
the table, and memory location 23308 should be set to produce the
desired overall pitch. Lines 100 and 110 repeatedly call the user
routine and the result should be a hissing, crackling sound. As there
is no attempt to restrict the data sent to the 1/O port to b4, the
border colour also changes randomly.

108 An Expert Guide to the Spectrum

Using this routine with data tables set up in regular patterns it is
possible to make a limited range of sound effects. For example,
make the following changes to line 60 onwards in the last program:

60 GOSUE 1000

70 FOKE 23319,2%8
80 FOKE 23320,91
90 FOKE 23307,N
100 FOKE 23308,250
110 LET a=USR 23296
120 FAUSE 1
130 GOTO 110

1000 LET N=220
1010 LET S=1
1020 LET D=0
1030 LET C=1

1040 FOR IXI=0 TO MN-1

1050 IF I=S THEN GOSUE 2000
1060 FRINT D

1070 FOKE I+23321,Dx16

1080 NEXT I

1090 RETURM

2000 LET S=INT(S+(C)

2010 LET C=C+,25

2020 IF D=0 THEN LET D=1{RETURN

2030 LET D=0

2040 RETURN
Subroutines 1000 and 2000 set up a table of values in the printer
buffer such that the frequency of the waveform decreases with time.
The resulting noise is a sort of ‘zap’ sound. You can experiment with
changing the pattern of 0s and 1s produced by subroutine 1000 to
create your own sound effects.

The ZX Printer

The ZX printer is a remarkably cheap way of obtaining hard copy
listings and graphics. Perhaps its only shortcomings are the
inaccuracy of its dot positioning and the quality of the aluminium
coated paper that it uses. (It is worth pointing out, however, that the
aluminium paper does photocopy particularly well!)

The ZX printer works by evaporating the aluminium coating

Tape, Sound and the Printer 109

from a roll of black paper. Where the aluminium is removed, the
black shows through, and it is this rather than any sort of ink that
makes the printing stand out. The ZX printer uses a spark produced
by two travelling metal points or szy/i to evaporate the aluminium,
and if you operate the printer in the dark, the blue electrical flashes
can clearly be seen just below the tear bar. The styli are mounted on
opposite sides of a moving band, so that at any time one of them is
positioned over the paper. As the paper is scanned by the styli it is
moved up by an electric motor, so that each scan can be used to print
a new row of dots on the paper.

The software that drives the ZX printer is fairly complete, and
there is very little that can be done to improve it. However, the way
that the ZX printer is controlled is interesting in itself as an example
of the way computers can be used to control external equipment.
And knowing the way that the printer works may suggest novel
applications.

The printer is connected to 1/O port 251. Reading the port
provides information concerning the current status of the printer. If
a printer isn’t connected, then b6 will be 1 (and conversely b6 will be
0 if a printer is connected). The state of b7 reflects the position of the
styli. If either of them are positioned on the paper, b7 is 0. Thus b7
can be monitored to discover when a stylus first comes over the
paper ready to print a line of dots. The speed that the styli scan the
paper varies depending on the loading on the motor. To overcome
this difficulty, an encoder disc is attached to the motor. This causes
b0 to pulse around 256 times as a stylus scans a line. Thus if the
production of dots is tied to the pulsing of b0 the dots will be evenly
spaced no matter how fast or slow the motor is running.

On output to port 251, bits bl and b2 control the motor. If b2is0
then the printer’s motor starts. If bl is 0 then the motor runs fast,
otherwise it runs at a slower speed. This slower speed is used to print
the last two scan lines so that the styli can be stopped off the paper,
ready to print the first line the next time the printer is used. Finally
b7 controls the voltage on the styli. If b7 is |, then the styli are at high
voltage and the resulting spark will burn a black mark on the paper.

Apart from the way that the bits signal the state of the printer and
control its operation, there are one or two details of operation that
are important. Firstly, the stylus voltage must be off to detect when
they reach the edge of the paper. The reason for this is that the
presence of the stylus voltage automatically sets b7 of the input high.
Secondly b0 and b7 are both larched until some data is written to the
I/O port. (‘Latched’ is electronic jargon for ‘held steady until

110 An Expert Guide to the Spectrum

otherwise instructed’!) So even if you want fresh information from
bits b0 and b7 you have to write something to the port first.

As all of the printer operations happen very quickly there is no
hope of controlling then from ZX BASIC. The following routine,
written in a cross between assembly language and English, gives the
fundamental method of writing a single row of 256 dots:

LDA 0O

OUT 251,A start motor at full speed
paper IN A,251 get the printer status

RL A rotate one bit left to

JP M, noprint test for printer

JP NC,paper test for stylus on paper
encode IN A,251 now read encoder bit

RR A

JP NC,encode and wait for it to be 1
then either:

LDA 0

OUT 251,A to print a paper dot
or

LDA 128

OUT 251,A to print an ink dot

This process is then repeated by jumping back to ‘encoder’ to print
the 256 dots in a line. The only other point to note is that the motor
must be slowed for the last two lines that you intend printing.

As already mentioned, the description given above is of little
practical use to the Spectrum programmer, as the built-in software
provides all the facilities required for using the ZX printer. One
project that does spring to mind is the use of the ZX printer with
other computers — but that is obviously outside the scope of this
particular book!

Chapter Nine

Interfacel and the
Microdrives

The addition of an Interface | and a number of Microdrives turns
the Spectrum into a very powerful and versatile computer system.
Interface | on its own adds the hardware and the software necessary
for a standard RS232 serial interface and a local area network.
These two features make the Interface 1 important in its own right,
and the local area network is sufficiently interesting to merit a book
to itself!

The Microdrives add a new capacity for handling data to the
Spectrum. Based on a continuous loop of tape, the Microdrives are
not as fast as floppy discs nor are they (currently) capable of storing
as much data. For simple applications - for example, saving and
loading programs - the Microdrives are best thought of as a faster
tape system. This speed difference is not in itself sufficient reason
for preferring Microdrives: their response is far from instant, and
you still have to wait a few seconds while a program loads. The main
reason for using Microdrives is that they open up a range of
applications that were difficult, if not impossible, for the Spectrum
to tackle. For example, it is very difficult to see how even small
quantities of data stored on tape can be processed if the results also
need to be stored on tape. The unexpanded Spectrum is mainly
limited to processing amounts of data that are small enough to be
held in RAM. With even one Microdrive it is possible to read from
one data file while writing to another. Also the software extension to
ZX BASIC in Interface 1 allows the creation of ‘real’ data files, not
just the saving of arrays. In other words, the Microdrive may not be
as fast as a floppy disc but it does open up roughly the same range of
applications. At a much simpler level, the ability to store a number
of programs on a single cartridge is a convenience that justifies the
expansion of any Spectrum.

This chapter looks at the extensions to ZX BASIC that
accompany Interface 1. The'final part of the chapter gives some

112 An Expert Guide to the Spectrum

short examples of how the new features can be used to create and
process data files. The next chapter examines some of the internal
workings of Interface 1 and the Microdrives. This is such a large
subject that there is only space to give the general principles and
important details. However, by this stage you should be able to use
the information to good effect to create your own programs.

ZX Microdrive BASIC - file specifiers

Interface | contains an additional 8K of ROM that supplements the
16K ZX BASIC ROM found in the standard Spectrum. The way
this addition is accomplished is described later. What is of interest at
this point is the form and use of these additions.

The additional commands of the extended BASIC, which I shall
refer to as ‘ZX Microdrive BASIC’, or ZXM BASIC, fall into four
categories:

1) extended tape commands such as LOAD*, SAVE* etc
2) new Microdrive-only commands such as CAT etc

3) extended channel commands

4) ad hoc commands CLEAR # and CLS #

The form of these commands is much easier to understand and
remember once you know that data is stored on a Microdrive in the
form of a named ‘file’, in much the same way that it is on tape. The
main difference is that to identify a file on tape all you have to give is
its ‘filename’; for a Microdrive you have to give a complete ‘file
specifier’. The format of a file specifier is:

device:device number;filename

where ‘device’ is a string that identifies the type of device that the file
is stored on, ‘device number’ is a number that identifies exactly
which device, and finally ‘filename’ is a string that gives the name of
the file. The filename follows the usual rule of having up to 10 letters,
and any of the parameters can be replaced by variables of the correct
type. For example, Microdrives are specified by a device code “M”
or “m” and so

“m”;z;“ myfile”

specifies a file called ‘myfile’ stored on the second Microdrive in the
system. Although file specifiers that use constants are by far the
most common, it is worth remembering that

Interface 1 and the Microdrives 113

DS$:D:F$

is a perfectly valid file specifier as long as D$ contains a device type,
D a device number and F$ a file name with a maximum of 10 letters.
For the moment the only device type that will be used is “m” for the
Microdrives, but other device codes, used to refer to the other
devices controlled by Interface 1, will be introduced in Chapter 11.

The extensions to the tape commands

Once you know the format of a file specifier the new BASIC
commands are very easy to remember. The extensions to the
commands that formerly handled only the tape system are

LOAD* file specifier
MERGE* file specifier
SAVE* file specifier
VERIFY*file specifier

These commands carry out the actions that are familiar from tape
operation, but using one of the devices controlled by Interface 1. For
example

SAVE* “m”;1;“myprog”

will save the current program on Microdrive | using the filename
‘myprog’ and

LOAD* “m”;1;“myprog”

will restore it. Both VERIFY* and MERGE* work with the
Microdrive in the same way as for the tape system. You can also use
the other forms of SAVE with SAVE*, The following commands
are all valid with the Microdrives and identical in operation to the
equivalent tape commands:

SAVE* file specifier LINE number
SAVE* file specifier DATA array name ()
SAVE* file specifier CODE start,length
SAVE* file specifier SCREENS$

LOAD*#* file specifier DATA array name ()
LOAD* file specifier CODE start, length
LOAD* file specifier SCREENS

114 An Expert Guide to the Spectrum
The new Microdrive commands
There are four completely new Microdrive commands:

CAT drive number

This command will produce a list of existing files on the Microdrive
indicated by ‘drive number’, where drive number can be a variable.
For example, CAT 1 gives a catalogue of Microdrive 1, and CAT d
will give a catalogue of the drive indicated by the value stored in d.

ERASE file specifier

This command will remove, that is erase, the file indicated by ‘file
specifier’. The storage space that the file occupied on the Microdrive
is then reusable. For example, ERASE “m”;1;“myprog” will remove
the file ‘myprog’ from the cartridge in Microdrive 1.

FORMAT file specifier

This command erases all of the files on cartridge and prepares it for
further use. A brand new cartridge has to be formatted before it can
be used. The ‘file specifier’ used with this command selects the device
that will be formatted and the ‘file name’ within the file specifier is
the name given to the whole cartridge. For example, FORMAT
“m”;1;*data’ will format the cartridge in Microdrive 1 and give the
whole cartridge the name ‘data’.

MOVE file specifier 1 TO file specifier 2

This command will copy the file indicated by ‘file specifier 1’ to the
device and with the file name indicated by ‘file specifier 2°. For
example, MOVE “m”;1;“mydata” TO “m”;2;“mydata2” will create a
copy of the file ‘mydata’ on Microdrive 2 and call it ‘mydata2’. The
MOVE command can be used to make two copies of the same file
(using different names) on the same drive or two copies of the same
file (perhaps even using the same file name) on different drives. It is
important to note that MOVE only works with data files, that is,
with files that have not been created using SAVE. To copy program
files all you have to do is use LOAD* and SAVE*. There are other,
more sophisticated ways of using MOVE but these are better
explained later.

The channel and stream commands

Interface 1 and the Microdrives 115

difficult to understand or remember; they fit into the overall channel
and stream philosophy described in Chapter 5. Indeed, it is only with
Interface |1 connected that the channel and stream system of IO
becomes really useful.

The OPEN # command is still used to associate channels with
streams, but now the range of channel specifiers is increased to
include file specifiers. That is

OPEN # s file specifier

associates stream ‘s’ with the channel given by ‘file specifier’. For
example

OPEN # 5, “m™; I;“mydata”

opens stream 5 to the channel formed by the file ‘mydata’ on
Microdrive 1. Notice that this description extends the idea of a
channel as an I/O device to include any separate and identifiable
source or sink of data. In this sense, although a Microdrive is a single
physical 1/O device, the fact that it can hold a number of separate
named files, each of which can be a source or sink of data, makes it
better to think of it as a number of channels. Once a stream is
OPENed to a file the usual INPUT # INKEYS$ # and PRINT #
commands can be used to read and write data, and the command
CLOSE # can be used to break the association. You can even use
LIST # to send the listing of a program to a Microdrive file.

An important point about the way any channel works is that the
PRINT command sends the same stream of ASCII codes to a
channel no matter what it is, and the INPUT statement interprets
the ASCII codes that it receives in the same way, no matter what the
channel is. This principle is obvious when the channel devices are the
familiar keyboard, screen and printer, but not quite so clear when
the channel is a file on a Microdrive. For example, if A=1234 then
PRINT #5;A will send five ASCII codes (49, 50, 51, 52 and 13,
corresponding to the digits 1,2,3,4 and ENTER) to whatever device
is associated with stream 5. Even though the sequence of codes sent
to the Microdrives is the same as that sent to any other device, there
are some ways in which a file channel behaves differently. The best
way to illustrate these differences is by an example.

Reading and writing a file — buffering

Consider the problem of writing 20 random numbers out to a file

116 An Expert Guide to the Spectrum

and then reading them back in. One of the many possible solutions
is:

10 OFEN #5,"m" 13 "mydata"
20 FOR I=1 TO 20
30 LET X=RND
40 FRINT X
50 FRINT 453X
60 MEXT I
70 CLOSE 5%
80 OFEN #3,"m";13"nydata"
90 FOR I=1 TO 20
100 INFUT #53R
110 PRINT R
120 MNEXT I
130 CLOSE #5
If you run this program and watch or listen to the Microdrive you
will discover that it runs its tape for a while before the random
numbers are printed by line 40. Then, after all 20 numbers are
printed on the screen, the motor starts up, the border colours flash,
and after a wait the numbers are again printed on the screen. The
reason for this sequence of operations lies in the fact that data to and
from the Microdrives is buffered. Instead of each character being
sent to the Microdrive as it is PRINTed, it is collected in an area of
memory known as a ‘buffer’ until there are enough to make it worth
starting the Microdrive. This means that data is only written out to
the Microdrive when a full buffer of data has been collected. As the
buffer holds 512 characters, the program given above finishes
PRINTing data without filling a buffer. In this case the CLOSE
statement at line 70 now has an additional job. It signals to the
Spectrum not only that the association between stream and channel
should be broken, but also that a partly filled buffer should be sent
to the Microdrives. Without this CLOSE statement the data would
stay in the buffer and never be written out. The Microdrive is
switched on for the first time because the OPEN command is
searching for the existence or otherwise of the file called ‘mydata’.
When it has scanned the whole tape without success the Microdrive
is switched off, and the FOR loop PRINTSs the data on the screen,
and also sends it to channel 5 where it is collected in a buffer. The
Microdrive is switched on again by the CLOSE statement, and the
contents of the partially filled buffer are written out. The next
OPEN statement again causes the tape to be searched for the file
called ‘mydata’, only this time the search is successful, and a buffer-

Interface 1 and the Microdrives 117

load of data is read from it. When the second FOR loop starts to
INPUT data the Microdrive is switched off because the data is
coming from the buffer, If more than 512 characters of data are read
from the file, then the Microdrive starts up again as another buffer
of data is read in. To summarise:

1) The OPEN command searches the tape for the file specified.
If it is found then a buffer of data is read in ready for the first
INPUT command on that stream.

2) Data produced by a PRINT command to the file is collected
in a 512-character buffer before being written out

3) The INPUT statement takes data from the buffer unlessit is
empty, when another buffer of data is read in from the drive

4) The CLOSE command will automatically send the data in
any partially filled buffer to the Microdrive.

There is no real need to understand the exact operation of the
buffering system that the Spectrum uses, but it does help to explain
why the Microdrive switches on at times when you might otherwise
not expect it to.

Using PRINT #, INPUT # and INKEY$#

There are one or two other special features of streams associated
with file channels. Firstly, you can only send data to a file that did
not exist before the OPEN statement, and more obviously you can
only read data from a file that exists before the OPEN. A file can
only be OPEN for reading or writing, and not for both at the same
time. If you want to make sure that a file doesn’t exist before you
attempt to write to it, then you can attempt to ERASE it first. For
example, add

5 OERASE "m"313'"nydata"
to the program in the last section.

Making sure that you don’t write to a file being read is a little more
difficult than you might imagine. An INPUT statement such as

INPUT #5,A

will send the control code for ‘move to the next print zone’ to stream
5, because of the comma before the A. To avoid sending data to read

118 An Expert Guide to the Spectrum

files, INPUT statements should use only semi-colons as separators.
Similarly, the only separator that should be used in a PRINT
statement sending data to a file is the apostrophe. The reason for this
is that, as already explained, the sequence of characters sent to a
write file by a PRINT statement is exactly the same as that sent to
the video driver (see Chapter 6). However, on reading the file back,
the INPUT statement accepts characters from the file and treats
them as if they had been typed on the keyboard. As you can verify
very quickly, the only valid way of ending the keyboard entry of a
data item to an INPUT statement is to press ENTER. For example,
the only correct way to enter data in response to

10 INFUT AJESICH

is to type a valid number, then ENTER, another valid number and
ENTER, and finally a valid string of characters followed by
ENTER. This rule of ending each data item with ENTER also
applies for INPUT from Microdrive files, but using PRINT it is
quite possible to create files that contain sequences of characters
that cannot be read back! For example, try

10 OFEM #35,"m"}1i"noread"
20 LET A=RNDILET BE=RND

30 FRINT @,k

40 FRINT £#53A,B8

50 CLOSE %5

H0 OFPEM £5,"m" 13" novead"
70 IMNFUT 4+5,A8

80 FRINT A,B

The result will be a crash at line 70! The reason is that line 40 writes
the two numbers separated by the control code for*,’ that is ASCII 6.
There is no way that this sequence of characters can be read back by
an INPUT statement using numeric variables. However, it can be
read back using a string variable

70 IMFUT #55A¢
80 FRINT A%
which reads back the exact sequence of ASClIcodesthatweresentto

the file by the PRINT command, and store them in the string AS$.

You can also read the file back character by character using
INKEYS:

70 LET A$=INKEY$ #5
80 FRINT A
0 COTO 70

Interface 1 and the Microdrives 119

In general INKEYS$ # will return the next character in the file no
matter what it is - printable character or control code.

What this means is that if you want to write a data item to a file
and read it back as a separate item it has to be followed by an
ENTER code. This ENTER code can be generated automatically at
the end of the PRINT # statement, or by including apostrophes
between data items. For example

PRINT #s;A

PRINT #s;B
and

PRINT #s;A’B

both write two separate numeric items to the file associated with
stream s.

As a final and rather surprising example of how INPUT from a
file is treated exactly like INPUT from the keyboard try:

10 OFEN #5,"m"}1i"questions"
20 FRINT £53"2x2"

30 CLOSE 25

40 OFEN #5,"m"j}13"questions"
S0 INFUT ¥53a

&0 FRINT A

70 CLOSE #5

Y ou might think that as line 20 writes a non-numeric string (2*2) to
the file the INPUT statement at line 50 would fail. What actually
happens is that the expression is evaluated and the answer 4 is stored
in A. This is a reflection of the fact that any numeric expression
typed in response to an INPUT will be evaluated and treated as if
you had typed the result instead!

The rules to remember are:

1) Each data item that you write to a file and want to read back
as a separate item should be followed by an ENTER code

2) A numeric item should be a valid arithmetic expression

3) A stringitem can include any type of character and its end is
marked by an ENTER code

120 An Expert Guide to the Spectrum
Advanced CAT

The full form of the CAT command is:
CAT #s, drive number

This will send the catalogue output to stream s, so

CAT #3,1

will catalogue drive 1 to the printer, the default channel OPENed to
stream 3. One of the main uses of this form of the CAT command is
to set up a file on Microdrive that contains all of the information
about the files on a cartridge. For example

10 ERASE "m"jli'ccat!
20 OFEN F95%a" i 1t eeat™
30 CAT #4,1

40 CLOSE #4

will create a data file containing the current catalogue of drive I.
This file can then be read back later in the program to discover if a
file already existed, or simply to discover the amount of space left on
the cartridge.

Advanced MOVEing - renaming and appending

The MOVE command has an extended form in which either of the

file specifiers can be replaced by stream numbers. For example, the
command

MOVE “m”;1;“ccat” TO #2

will MOVE the data in the file ‘ccat’ to the screen, the default
channel OPENed to stream 2. In this way MOVE can be used to list
data files to the screen or the printer. It is possible to MOVE data
from the keyboard to a data file, but stopping the data transferis very
messy, and it is better not to use MOVE to ‘connect’ streams
together in unorthodox ways. For example

MOVE #1 TO #3

will move data from the keyboard to the ZX printer, but the only
way to break this connection is to switch the machine off!
There is no command that will explicitly allow you to rename an

Interface 1 and the Microdrives 121

existing file, but the MOVE command can be used to the same
effect. The command

Move filespecl TO filespec2:ER ASE filespec |

will first make a copy of ‘filespecl’ under the new name ‘filespec2’
and then ERASE the old copy, thus effectively renaming the file.

If MOVE is used with file specifiers then it closes the file at the end
of the operation, but if stream numbers are used then the stream is
left OPEN until it is explicitly CLOSEd. This gives us a way of using
the MOVE command to append one data file to another. For
example

10 OFEN #4,"m"313"long"

20 MOVE "m"j13"first" TO #4
30 MOVE "m"j13"second" TO #4
40 CLOSE 44

will append the file ‘second’ to the file ‘first’, the result being stored in
a file called ‘long’. As the MOVE command doesn’t close a stream at
the end of its operation it can transfer the whole of a file to any
position within another. You could add data to a file by MOVEing it
to a new file, PRINTing the new data, and then using MOVE and
ERASE to give the new file the name of the original file.

CLEAR #and CLS #

The two commands CLEAR # and CLS # seem to have been added
to ZX BASIC to improve it rather than because they were necessary.
CLEAR # will reset the streams and channels to their initial state
following switch-on. In effect this CLOSEs all the streams and resets
streams 0 to 3 to their default channels. However, it is important to
realise that CLEAR # is not a substitute for CLOSEing any files that
might be open. The difference is that following CLEAR # any data
that is stored in partially filled buffers is discarded without being
written out to a Microdrive! (Remember that a CLOSE will write
any partially filled buffers to the appropriate file before breaking the
stream/ channel association.)

The command CLS # not only clears the screen in the same way as
CLS, it also resets all of the screen attributes to their initial values at
switch-on, i.e INK to black, PAPER to white and so on. Itisa good
idea to start all programs that are intended for use with Interface 1
only with

122 An Expert Guide to the Spectrum

10 CLS #3CLEAR #

This will ensure that all attributes are reset and all streams, apart
from the default ones 0 to 3, are CLOSEd.

The end-of-file problem

Something that has been ignored so far is the problem of knowing
when a program has reached the last item while reading a file. This is
important because the Spectrum will give you an error message and
crash if it tries to read an item after the end of the file has been
reached. Unlike other versions of BASIC, there is no built-in
function to detect the end of a file in ZX BASIC, so we must either
use a specially-written machine code routine or place a special
marker at the end of a file. Using a special marker is quite easy
in ZX BASIC, as there are a number of character codes that
never occur in normal use. For example, CHR$(0) to CHRS$(5)
are assigned no meaning by ZX BASIC, so they can be used to mark
any special points in a file. This use of markers or flags is easy
enough if the data is stored on the file in the form of strings, but it is
obviously not possible to include such odd characters with numeric
data.

The solution to this problem is always to read numeric data into a
string, and then test this string for the end-of-file flag. If the string
isn’t the end-of-file flag then presumably it is a valid numeric data
item, and can be converted to numeric form by using VAL. For
example, if CHR$(0) is being used as the end-of-file marker, the
following program will write a file with a random number of data
items and then read it back without causing an end-of-file error:

10 OFEN #4,"m"313"randon"
20 LET L=INTC(RNDXS50)+100
30 FOR I=1 T0 L

40 FRINT #43RND

S0 MEXT I

60 FRINT #4;CHR$¢0)

70 CLOSE +4

80 OFEN #4,"m"j13"random"”
20 INFUT 4434
100 IF A%$=CHR$(0) THEN CLOSE #4:8TOF
110 LET A=VAL A%
120 PRINT A
130 GOTO 90

Interface 1 and the Microdrives 123
A prompting ERASE program

One of the most tedious occupations imaginableis tryingto ERASE
all the redundant files on a cartridge. To avoid repeatedly typing in
ER ASE etc. the following program will read the catalogue and then
ask the user whether or not each file is to be ERASEd. In other
words, it provides a prompting delete facility.

10 CLEAR #3CLES &

20 INFUT "HWhich drive ?"3D

30 FRINT AT 10,83"Flease wait"
40 ERASE "m"iD3"ccatl"

50 OFEN #4,"m"3iDi"ccat"

60 CAT #4,D

70 CLOSE #4

80 OFEN #4,"m";D3"ccat"

90 CLS

100 INFUT #43C%

110 FRINT AT 0,103C%"

120 INFUT $43F%

130 INFUT Ek435F%

140 IF LEN Fé=0 THEN GOTO 220
150 FRINT "Delete "3jF4$3" 4/n 2"}
160 INFUT A%

170 IF A$C1)<:U"N" AND A$C1)<H"Y" THEN

GOTO 1850

180 FRINT A%

190 IF A$C1)="N" THEN GOTO 130
200 ERASE "m"jID3F¢
210 GOTO 130
220 FRINT "No more files"

The first part of the program (lines 10 to 80) sets up a file ‘ccat’ on the
drive specified, which contains the catalogue of the same drive.
Notice the way that d is used to specify the drive number. The second
part of the program (lines 90 to 200) then reads the file in to obtain
the name of each file in turn, and asks if each should be removed or
not. The double INPUT at lines 120 and 130 is not a mistake! The
first entry in the file ‘ccat’ is the cartridge name: this is read by line
100. Then there is a null string, read by line 120, and only then comes
the first proper file name read by 130. After this, eachread of the file
returns either a file name or a null string which marks the end of the
list of files. The null string is detected by line 140 and used to end the
program.

124 An Expert Guide to the Spectrum
Data file handling - an example

The previous example illustrated one way in which the standard
ZXM BASIC commands can be used to construct useful Microdrive
operations. Handling data files appears to be such a simple
application of the BASIC commands provided that examples may
seem unnecessary. In practice, however, the business of handling
data files often proves to be full of subtle traps. The following short
example involves the creation and maintenance of the simplest type
of data file - a sequential file. The actual application is a
personalised telephone directory, but in many ways this is irrelevant
to the example. Any sort of data that needed to be stored, added to
and then examined would present the same set of programming
problems.

The example consists of two small programs. The first is used to
add entries to the directory:

10 CLEAR #3ICLE #
20 GOSUER 1000

30 CLS

40 FPRINT "Enter new names and numbers'

50 FRINT "type # whern a8l] entries added"

60 INFUT "surname "384¢

70 IF S$="4" THEN GOTO 180

80 INFUT "indtisls"314

20 INFUT "telephone rumber "3T9¢

100 FRINT 6T S,03"New Entry-"

1140 FRINT AT 10,0563 "384%;

120 FRINT " Tel "i7T%

130 INFUT "Is this corrvect (4/n)"3iad

140 IF A%<y AND Af (1 ="m" THEMN
GOTO 130

150 IF Al ="r" THEN GOTO 30

140 PRINT #4384 T4 T4

170 GOTO 30

180 FRIMT #4;CHR$ 0/CHRE$ 0CHRE 0
190 CLOSE #4

200 ERASE '"m"jil3"telnum”

218 MOUVE w3 9“Lemp$$$” TO "m"313"tel num"
220 ERASE "m"jli"tenpdbd"”
230 sTOF

Interface 1 and the Microdrives 125

1000 OFEN #5,"m"j15"telnun”

1010 OFEN #4,"m"313'"tempbss"’

1020 INFUT 5364717714

1030 IF S4=CHR$ 0 THEN RETURN

1040 PRINT #4364 1474

1050 COTO 1020
Lines 10 and 20 get things going. Line 20 calls subroutine 1000 which
reads the existing file of telephone numbers, ‘telnum’, and creates a
new file called ‘temp$$$’. The telephone number file is organised into
groups of three string data items. The first records the surname, the
second the initials and the third the telephone number. The end of
the file is marked by a group of three items each equal to CHRS 0.
Subroutine 1000 copies the file ‘telnum’ to ‘temp$$$’ so the new
items can be added at the end. You might think that the easiest and
quickest way to do this is to use MOVE as explained earlier.
However, MOVE would copy the entire ‘telnum’ file, including the
three CHR $# 0 items that mark the end of the file! Obviously if thefile
is going to be extended the CHRS$ 0 items have to be left out of the
copy, and th's is exactly what line 1030 ensures.

Once the ‘temp$$$° fileis set up, the main part of the programi(lines
30 to 170) allows new names and telephone numbers to be entered to
the three string variables S$ (surname), I$ (initials) and T$
(telephone number). If the new entry is correct it is written out to the
file by line 160. When all the entries have been written out, line 180
adds the three CHRS$ 0 characters to mark the new end of the file.
Then lines 200 to 230 rename ‘temp$$$’ as ‘telnum’, so restoring the
cartridge to its original state.

The first time you run this program to set up a telephone directory
it will crash because it tries to read the non-existent file ‘telnum’. The
solution to this problem is to create a short file directly using

OFEN #4,"m"i18"telnum"]
FRINT #4;CHR$0 CHR$0 ' CHR$0: CLOSES4S

thus preparing the cartridge for the program.
The second program reads the file of names and telephone
numbers and searchers for any given surname:

10 OFEN #4,"m" {13 "telnun"

20 INPFUT "surname'" IN$

30 INFUT $43663163T%

40 IF S%=CHR$ 0 THEN CLOSE #4:1G607T0 10
S0 IF S4<xN$ THEMN GOTO 30

60 FPRINT I$3" 384" Tel ":T$

70 GOTO 30

126 An Expert Guide to the Spectrum

This program is surprisingly simple. Line 10 OPENSs the file and
lines 30 to 70 read it through, searching for the surname in N§. Line
40 detects the end of the file. You might be puzzle by the CLOSE in
line 40 being followed so closely by an OPEN in line 10. The reason
for this is that each time a name is searched for, the file has to be read
from the beginning again, and the OPEN command ensures that this
is the case.

There is nothing else to add to the description of this example
apart from pointing out that the time it takes to retrieve the
telephone number doesn’t depend very much on the size of the file.
The reason for this is that each time a name is searched for, not only
the entire file but the entire tape is read! The OPEN command
that is essential to the re-reading of the file scans through the
remainder of the tape to get us back to the beginning of the file. The
consequences of this method of re-reading a file are discussed
further in the next chapter.

Putting the Microdrives to work

This chapter has described the sort of operations that Microdrives
are capable of. They open up a whole new world of Spectrum
programming, and it is important not to ignore the challenge of
producing good and usable applications that take advantage of their
facilities. The Microdrive cannot be treated as a traditional data
storage device, beause it is really nothing more than a fast tape drive
with a well-developed set of extensions to ZX BASIC. With such a
device, achieving reasonable response time and user-friendly
operation is decidedly possible, although it does require a great deal
of understanding of both the working of the Microdrive and the
application in hand.

Chapter Ten

Principles of Interfacel
and the Microdrives

There are two main areas of interest concerning the way that
Interface 1 and the Microdrives work. Firstly, there is the interesting
question of how Interface | can provide 8K of ROM routines to add
the new ZX BASIC commands (and extend some of the old ones)
when a 48K Spectrum has no spare address space! Secondly, there is
the way that the system of channels and streams are extended to
accommodate the Microdrives. Both these topics are dealt with in
this chapter, and some of the very many applications that they open
up are explored.

The ROM paging

It is difficult to extend the machine code routines contained in the
16K ZX BASIC ROM because all the Spectrum’s available 64K’s
worth of addresses are already allocated either to RAM or ROM.
Shortage of addresses is becoming a fairly common problem as
microcomputers become increasingly sophisticated. The standard
solution is to use paging. Paging is a technique whereby a block of
addresses can be shared by a number of blocks of memory. Of
course, at any one time only one of the memory blocks can be
addressed, and this implies that to make use of the other blocks there
has to be a way of switching one block of memory out and another
in. This switching out and in of a memory block is usually referred to
as ‘paging’. For example, the BBC Micro uses paging to select one of
a number of 16K ROMs, each of which might contain a different
application or language. Paging is also used by the Spectrum to add
Interface I's extra 8K of ROM. At any one time either the usual 16K
ZX BASIC ROM is present, or the new 8K ROM is switched in. The
actual electronics of paging is not elaborate because the Spectrum
was designed with a ROM disable line that is brought out to the

128 An Expert Guide to the Spectrum

expansion connector (see Chapter 2). Holding this line at +5 volts
will stop the 16K ROM responding to any address, and thus allow
another ROM to take its place.

This all sounds very simple, but the Spectrum’s use of ROM
paging is very different from most in that it extends the existing ZX
BASIC commands using the machine code routines in the paged 8K
ROM. This implies that the paged ROM has to be switched in and
out automatically as a program is running. The question is, how?
Consider for a moment what happens when the Spectrum comes
across a statement that isn’t in its normal repertoire. It immediately
signals an error by doing a RST § to call the error handler routine in
the ZX BASIC ROM. If this jump to memory location 8 is detected,
and used to page in the new ROM, then the routines that it contains
can check the form of the command and see if it corresponds to
something that it can handle. This is in fact what happens. Interface
1 continuously monitors the Spectrum’s address bus for the
occurrence of address 8, which it immediately takes as its cue to page
in the new 8K ROM. Thus the command

CAT 1

will cause an unexpanded Spectrum to give an error message by
doing a RST &, but ina Spectrum connected to Interface | the RST 8
pages in the new 8K ROM, which carries out the catalogue
operation and then returns to ZX BASIC after clearing the error
flags. Of course, if the command line is not recognised by the new
ROM it passes the error back to the ZX BASIC ROM, which then
produces an error message.

Interface 1 will also page in the new ROM if address 5896 is used.
The reason for this is that 5896 is within the ZX BASIC ROM’s
CLOSE routine, and this has to be intercepted before it even
attempts to CLOSE a Microdrive channel. The 16K ROM is paged
back in by the new 8K ROM using address 1792. Methods of paging
the ROMs and using the facilities in the new 8K ROM will be
discussed later in this chapter.

The Microdrive data format

The Microdrive is essentially a fast tape drive with the tape formed
into a continuous loop, so that any part of it can be written or read
without rewinding. Data is written and read on two tracks to achieve
a reasonable level of data storage. Details of the exact physical

Principles of Interface 1 and the Microdrives 129

format that is used to store are unlikely to be of use, because the
Microdrive is a device unique to the Sinclair range of computers.
However, the organisation of data on the tape is of interest. Unlike
the standard tape cassette system, data is stored on the Microdrive in
blocks of fixed size known as sectors. Simply calling a ‘sector’ a
‘block of data’ is understating the case a little. A sector is better
thought of as an area of tape where data can be stored. When a
cartridge is FORMATted, as many sectors as can be accommodated
are written to the tape. At first all these sectors are ‘marked’ as being
free for use; when you write data to the drive, sectors are used and
marked as used. If it helps you to visualise what is going on, you can
think of a free sector as containing arbitrary data that is of no
interest, and a used sector as containing data that you value. In
actual fact the FORMAT command marks some of the sectors that
it creates as used, because they lie on a part of the tape that is faulty -
through being near the splice that joins up the loop, or through
having a damaged surface for some other reason.

As the sector is the fundamental unit of data storage on the
Microdrive, it is obviously worth examining it in more detail.

The sector format

Each sector on the tape is made up of two parts a header block and a
data block. The purpose of the header is to identify the particular
sector that is currently passing under the read head. The format of a
header block is:

12 bytes of lead-in signal
1 byte flag
I byte sector number
2 bytes unused
10 bytes cartridge name
I byte check sum

It is important to realise that the sole purpose of the header is to
mark the current position on the tape, and in this sense its most
important component is the l-byte sector number. When the
FORMAT command creates the sectors, it assigns each one a
unique sector number between 0 and 255. However, not all these
sector numbers exist on any given cartridge, as the tape is simply not

130 An Expert Guide to the Spectrum

long enough. Header blocks are read by both read and write
operations, but the only operation that writes them isa FORMAT.
The header blocks form unchanging ‘signposts’ to the data blocks
that follow them.

The format of a data block is best thought of in two parts: a record
descriptor that stores information about the data that follows and,
at long last, a record which stores useful data. The detailed format of
a data block is:

record descriptor

12 bytes of lead-in signal
| byte flag

1 byte record number

2 bytes record length
10 bytes file name

1 byte check sum

record

512 bytes of data
1 byte check sum

Notice that the record descriptor part of the data block has the same
format as a header block., and so can be read by the same software. It
contains a number of pieces of information that are essential to the
organisation of sectors into named files.

A named file is a collection of sectors. The file name is stored in
each sector in the ten bytes set aside for it in the record descriptor.
The order in which the sectors should be taken to make up the file is
given by the I-byte record number. Forexample, a file might consist
of five sectors: the first would be record 0, then record I and so onto
record 4. Notice that the record number has nothing to do with the
sector number that the data happens to be stored in. For example,
record 0 might be stored in sector 57, record | in sector 66 and so on.
The complication in this simple picture is the possibility that a
sector’s data area may not be completely used. As a file is created, a
new sector is written only when a buffer is full, so the only time a
partially-filled buffer can be written out is at the end of a file. The
two record-length bytes are used to hold the number of bytes of the
data area that actually hold data. For all but the last record in a file,
the record-length number will be 512 bytes.

Principles of Interface 1 and the Microdrives 131
Microdrive maps

There is a fundamental problem with the sector format used with the
Microdrives. It is not evident until you try to work out how sectors
are written during file creation. The problem is, how do you know
whether or not the sector that is just about to pass under the
read/write head is free or used? The header block is never re-written,
s0 it cannot be used to hold the change in status of a data block that
has just been made part of a file, or freed by an ERASE operation.
You might think that the obvious place to store the information
about whether or not a data block was free was in the data block
itself. This is indeed the only place where such varying information
can be stored, but using it brings another problem. Due to timing
problems, the Microdrive can only rewrite an entire data block.
Suppose there is a full buffer ready to be written out to a free sector.
The built-in software reads the record descriptors as they pass under
the read head to discover if the data block that follows is free. When
a free block has been found, it is too late to begin writing the data
out: the first part of the block (the record descriptor) has passed the
reading head, and there is no way you can write a fragment of a data
block. One solution would be to wait until the header of the free
block that had been identified came round again! This, of course,
would mean that each write operation would involve at least one
complete scan through the tape, and overall operation would be very
slow. The solution adopted by the Spectrum is to construct a
Microdrive map that shows which sectors on a cartridge are free and
which are used. A Microdrive map consists of a block of 32 bytes,
and each of the theoretically possible 256 sectors is represented by a
single bit. If the bit that represents a sector is set to 1, this means
either that the sector is used or that it doesn’t exist on this particular
tape. On the other hand, if the bit that represents a sector is set to 0
then the sector is free and can be used to construct a file. You should
be able to see that, given a correct Microdrive map, the Spectrum
can tell if a sector is free for use simply by reading the sector number
in the header, and be ready to rewrite the entire data block if it is.

The Microdrive map is a very clever way around the problem of
knowing when a sector is free. A new map has to be constructed fora
drive every time that a file is OPENed, because there is always the
possibility that the cartridge has been changed since the last time the
map was produced. During file operations the map can be kept up to
date by setting the bits that represent any sectors used. Thus the only
costs encountered in the use of Microdrive maps are the time needed

132 An Expert Guide to the Spectrum

for a complete read of the tape with each OPEN command, and the
32 bytes of memory required to hold the map itself.

Thé Microdrive channel

The final component you need to understand is the Microdrive
channel. If you refer back to the description of the standard channels
and streams in Chapter 5, you will see that all that is necessary to
extend the systemtoincludefiles held ona Microdriveis theintroduc-
tion of a new type of channel record or descriptor. In fact it is also
necessary to extend the software that handles streams and channels,
but the new 8K ROM takes care of this.

A Microdrive file channel descriptor has the following format:

byte name use
0 - 0008 error routines address
2 - 0008 error routines address
4 - ‘M’ channel identifier
5 - address of output routine
7 = address of input routine
9 595 length of channel descriptor
11 CHBYTE next byte in record
13 CHREC current record number
14 CHNAME 10 byte file name
24 CHFLAG flag b0=0 open for read
25 CHDRIV drive number
26 CHMAP address of microdrive map
28 ~ 12 bytes of lead-in signal
40 HDFLAG header flag b0 set to |
41 HDNUM sector number
42 - not used
44 HDNAME cartridge name
54 HDCHK header check sum
55 — 12 bytes of lead-in signal
67 RECFLG record flag b0 set to 0
68 RECNUM record number
69 RECLEN number of bytes in record
71 RECNAM 10 byte file name
81 DESCHK record descriptor check sum

Principles of Interface 1 and the Microdrives 133

82 CHDATA 512 byte data buffer
594 DCHK data checksum

There are many interesting features in this channel descriptor. In
overall structure it falls into three parts. Bytes 0 to 27 form a
collection of general channel information, bytes 28 to 54 form a
sector header, and bytes 55 to 594 form a data block. The fact thata
channel descriptor contains data formulated as a sector header and a
data block is, of course, no accident. When a sector is being written
or read, the header is stored in bytes 28 to 54 and the data block in
bytes 55t0 594. In this sense the last part of the channel description is
a memory image or copy of the sector on tape.

The first part of the channel descriptor has roughly the same
format as the channel descriptors introduced in Chapter 5. In fact
the channel and stream software still treats the first four memory
locations as the addresses of the output and input routinesto be used
with the channel. As these locations now hold address 8, the error
routine, any attempt to use the channel’s output or input routine
causes the new 8K ROM to be paged in. When this happens, the
routines in the shadow ROM then use the four locations following
the channel identifier (byte 4) as the address of the output and input
routines within the new 8K ROM. (Notice that the first four memory
locations can still be used to hold the addresses of output and input
routines in the main 16K ROM or anywhere in RAM. This idea is
explored in the final chapter.)

Byte 9 holds the length of the entire channel descriptor. This is
necessary because the software might have to search though the
channel’s area of memory, and in the extended system, channel
descriptors can have different lengths.

The location of the buffer described in the last chapter can now be
seen at the end of the channel descriptor for the file concerned. This
buffer is filled or emptied as data is sent or retrieved from the file.
Bytes 11 and 12, CHBYTE, are used as a pointer to the next byte to
be added or removed. When an attempt is made to add the 513th,
byte, the entire data block is written out. If a 513th byte is requested,
then the next record in the file will be read into the channel
descriptor.

The only other byte worth describing is byte 67, RECFLG. This
records the fact that the block passing under the head is a data block
(b0=0); it also holds one or two other pieces of information. If bl is
set to | then the record that has just been read in is the last record in

134 An Expert Guide to the Spectrum

the file; in other words bl is an end of file flag. Bit 2 is set to 1 if the
file being read is not a PRINT file i.e. if it has been created by a
SAVE* command.

Summary

All the important features of Microdrive operation have now been
described, but it may be helpful to give a summary of operations.

(1) Datais stored on the tape in the form of fixed-size blocks called
sectors.

(2) Each sector is composed of two main parts: the header, which
contains the sector number and is not changed during normal
operation, and the data block, which contains the filename,
record number and the actual 512 bytes of data that each sector
can store.

(3) A Microdrive map is used to discover if a sector is used or free.
The map is built up each time a file is OPENed by scanning the
entire tape, and then kept up to date as sectors are used.

(4) The Microdrive file channel descriptor contains the same data
format as a sector, plus a number of extra pieces of information
concerning the construction of the file.

The best way to make sure that this method of operation is
understood is via the examples in the following sections.

A record/sector lister

It is quite easy to find out which sectors have been used to store the
records of a file. All you have to do is read through the file and
PEEK the sector number stored in the file channel descriptor each
time a new record is read.

There are two questions that have to be answered before this is
possible:

1) Where is the file channel descriptor stored?

2) How can the reading of a new record be forced?

The solution to the first problem can be found in Chapter 5. The
address of any channel descriptor can be found by examining the
correct entry in the stream table. If the channel descriptor has been

Principles of Interface 1 and the Microdrives 135

opened to channel S, the start address of the descriptor can be found
using the following subroutine:

1000 LET A=23574+2%x8

1010] FE A H2EAXPEERK(A+])
1020 { 234B1+2BAXPEEK 23637
1030 LET C=C+D-1

1040 RETURN

Line 1000 finds the address of the entry in the stream table; this holds
the offset, from the start of the channel’s area of memory, of the
channel associated with stream S. Line 1010 stores this offset in C,
line 1020 stores the address of the start of the channel’s area in D,
and line 1030 finally uses all this information to calculate the address
of the first byte of the channel descriptor in C.

The second problem is easily solved. An INPUT # on the stream
will cause a new record to be read into the buffer if all the data in the
buffer has been processed. Bytes |1 and 12 in the buffer, CHBYTE,
act as a pointer to the next byte that will be brought from the buffer
to satisfy an INPUT #. If this POKEd with a large value (>512) the
software will be tricked into thinking that all the data in the buffer
has been used, and a new record will be read. Thus:

POKE C+12,5
INPUT #S;AS

will always cause a new record to be read in (assuming that C
contains the address of the first byte of the channel descriptor.)

Now that these two problems have been solved, the program is
easy:

10 OFEN #4,"m"313"big"

20 LET S=43G08UE 1000

30 FRINT "record "jFEEK(C+68),
40 FRINT "sector "3PEEK(C+41)
50 FOKE C+12,5

60 INFUT #43a%

70 GOTO 30

Line 20 uses subroutine 1000 to store, in C, the address of the
channel descriptor that is associated with stream 4. Lines 30 and 40
then PRINT the record and sector number by PEEKing the
appropriate bytes in the channel descriptor, and finally line 50 and
60 force a new record to be read in.

If you use this program on a tape that contains only one file you

136 An Expert Guide to the Spectrum

will discover that the records are not stored on sequential sectors.
For example, record 0 might be stored on sector 20, record 1 on
sector 22, record 2 on sector 24, and so on. The reason for this is that
the sectors pass under the Microdrive head faster than data can be
built up in the buffer ready to be written out; the ‘missing’ sectors are
missed opportunities!

Looking at the map

The Microdrive maps are stored within the region of memory
starting at 23792 (see the next section). The exact address that any
map is stored at can be found from an examination of bytes 26 and
27 (CHMAP) of the channel descriptor. Using this information it is
easy to print out the bit pattern so that the positions of free and used
sectors can be seen. Try the following program:

10 OFPEN #4s"m*31: " nY
20 LET S=43G08UB 1000
30 LET M=PEEK(C+Z&)+256XFEFK(C+27)
40 FOR XI=0 TO 31
50 LET B=PEEK(M+I)
60 FOR Jd=1 T0O 8
Z0 PRINT B=2xINTE/Z)3
80 LET BE=INT(E/Z)
P0 NEXT J
100 MEXT I
110 STOF
Line 30 stores the address of the Microdrive map in M. Lines 40 to
90 then print the 32 bytes as a continuous stream of bits so that you
can see which sectors are in use.

If you run this program and file ‘b’ already exists you will discover
that something odd happens to the map. The reason for this is that
although every OPEN command constructs a Microdrive map, it is
only kept if the file is discovered to be a write file at the end of the
scan through the tape.

Ad hoc channels and non-PRINT files

Most ZXM BASIC commands such as MOVE, SAVE etc. need to
use a channel descriptor in the course of their operation. Such
descriptors are created by the commands and then destroyed at the

Principles of Interface 1 and the Microdrives 137

end of the operation, and are called ad hoc channels. The only
difference between a normal channel descriptor, as created by an
OPEN command, and an ad hoc channel is that the M channel
identifier (at byte 4) is replaced by CHR$(205), i.e. CHR$(CODE
(“M”)+128).

Another feature of Microdrive files is their segregation into
PRINT and non-PRINT files. PRINT files are created by the
commands OPEN, PRINT and CLOSE; non-PRINT files are
created by SAVE. The only real difference between PRINT and
non-PRINT files is that the non-PRINT files store certain items of
information about their nature in record 0 of the file. To be precise:

record 0 of file

byte 1 flag byte # 0= BASIC
1/2= array data
3= code
bytes 2 and 3 number of data bytes in file
bytes 4 and 5 start address
bytes 6 and 7 length of program area
bytes 8 and 9 auto start line number

You should be able to see the similarity between this data and the
format of the tape header described in Chapter 8. Even taking this
difference into account, there is no reason why a non-PRINT file
couldn’t be read, using INKEYS$, as a sequence of ASCII characters.
But the Spectrum’s software makes a clear distinction between
PRINT and non-PRINT files, and will not allow you to OPEN a
non-PRINT file. This is a pity, because it would add yet another
dimension to Microdrive data handling if it were possible to read

and write program files. It is possible to fool the system into writing
a non-PRINT file using PRINT statements by POKEing byte 67
(RECFLG) in the channel descriptor with 4 immediately after
OPENing the file. The value of RECFLG is the only way the system
has to recognise a non-PRINT file. If you do this, you must be sure
to write the information described above into the first record before
trying to write the program or other data.

The new system variables

When the new 8K ROM is paged in for the first time it creates 58

138 An Expert Guide to the Spectrum

extra system variables that are necessary to its operation. These are
added to the end of the usual system variables area, and take up part
of the memory area set aside for Microdrive maps in the
unexpanded Spectrum. Rather than give a complete list of all the
new variables (one can be found in Appendix 2 of the Interface 1 and
Microdrive manual) it makes more sense to describe the few that are
useful. Some of the system variables are concerned with the other
features provided by Interface 1, and these will be treated in the
following chapters. Some are used as temporary work areas for the
extended commands and the machine code routines in the new 8K
ROM. These are described as required in the section on using
machine code. After taking all these out of consideration there are
only two interesting new system variables that have anything to do
with the Microdrives!

IOBORD (23750)

This simply sets the border colour that the screen flashes during any
Interface 1 controlled I/0. You can POKE any colour code that you
like into this variable to change and even remove the border
flashing.

COPIES (23791)

The value stored in this system variable sets the number of copies of
a file that are generated by the SAVE* command. If you make more
than one copy of the file it will take more space, but it can increase
the speed of loading. Each copy that is made has to be ERASEd
separately, i.e. three copies of a program will take three ERASE
commands before the program is lost forever!

Using assembly language

Using the routines in the new 8K ROM from Z80 assembly language
could be very awkward if it were not for the provision of a special
calling mechanism. The 8K ROM is paged in by the ZX BASIC
ROM when the error handler is called by a RST 8 instruction. The
error code is stored in the memory location following the RST 8
instruction and this is examined by the 8K ROM to find out the type
of error that has caused it to be paged in. However, the error codes
only use a limited range; and this fact has been used to allow
assembly language programs to call Microdrive routines that are
stored in the new 8K ROM.

Principles of Interface 1 and the Microdrives 139

The program
RST 8
DEFB code

will call a particular Microdrive routine in the new 8K ROM
depending on the value of ‘code’ as given in the following list:

code action

33 Switch a Microdrive motor on (The A register contains
the drive number; if the A register contains zero than all
motors are switched off)

34 OPEN an ad hoc channel

35 CLOSE a file

36 ERASE a file

37 Read next record of a PRINT file

38 Write next record of a PRINT file

39 Read a given record of a PRINT file
(The record is specified in the channel descriptor)

40 Read a PRINT file sector
(The sector specified in CHREC is read)

41 Read next sector on tape
(The next sector that passes under the read head is loaded
into the channel descriptor)

42 Write a sector
(The sector number is stored in CHREC in the channel
descriptor)

The routines corresponding to codes 34 and 36 - OPEN and ERASE
~ use the new system variables D_STR1 (23766) and N_STR1 to
hold the drive number and the file name respectively. The first two
locations of N_STR1(23770) hold the length of the file name, and
the last two (23772) hold the address of the first letter of the file
name. On exit from the OPEN operation, the address of the channel
descriptor is in the IX register and its displacement (as stored in the
stream table) in the DE register. The rest of the routines all expect
the address of the channel descriptor to be held in the IX register.

When using any of these routines, it is worth being aware that
none of the registers is saved, and that the state of the maskable
interrupt is, in general, not predictable. Before using any of the
routines, it is good practice to save the HL register pair and disable
the interrupts. On return, restore both the HL register pair and
enable the interrupts.

140 An Expert Guide to the Spectrum
A rewind command

As an example of using the new 8K ROM routines, consider the
problem of producing a ‘rewind’ operation. In this context,
rewinding a file refers to making the current record into record 0.
Using the read record operation (code 39) it is possible to read any
record of a file into the channel descriptor’s buffer. The following
assembly language routine makes this operation available asa USR
function:

address assembly code comment
language

23296 PUSH HL 229 save HL

23297 LD IX,chan 221,33,0,0 load IX with channel address

23301 DI 243 disable interrupt

23302 RST 8 207 read record

23303 39 39 code

23304 EOR A 175 clear A

23305 RST 8 207 motor off

23306 33 33 code

23307 EI 251 enable interrupts

23308 POP HL 225 restore HL

23309 RET 201 return to BASIC

To use this routine, the address of the channel descriptor has to be
POKEd into 23299 and 23300. The only other point of interest is the
use of code 33 to stop the motor after the read.

This routine to read any record can be used to advantage in the
telephone number program given at the end of the previous chapter.
The method used there to re-read the file was to CLOSE the stream
and re-OPEN the channel. Of course OPENing the channel means
that all the sectors on the tape have to be read to build up a
Microdrive map. Time can be saved by avoiding this OPEN
command using the ‘read any record’ routine to read record 0, i.e.
rewind the file. Using this idea gives the following modifications to
the program

95 GOSUE 1000

40 IF S$=CHR 0 THEN GOSUE 20003C0T0 20

Principles of Interface 1 and the Microdrives 141

1000 DATA 229,221,33,0,0,243,207,239
175, 0/ ,33’&\)1”25—'59‘.01

1010 FOR A=23296 TO 23309

1020 READ D

1030 FOKE &,D

1040 MNEXT A

1050 RETURN

2000 LET &=

2010 LET A=23574+2x8

2020 LET C=PFEEK A+256XFEEK(A+1)

2030 LET D=PFEEK 2Z34631+Z56XPEFK 234637

2040 LET C=C+D-1

2050 FOKE 23300,INT(C/256)

20460 FOKE 23299,C-INT(C/254)%2564

2070 FOKE (C+13),0

2080 LET A=USR 23296

2090 FOKE (C+112,0

2100 RETURN
Subroutine 1000 is the familiar machine code loader used in other
examples. Subroutine 2000 performs the rewind operation. Lines
2000 to 2040 get the address of the channel descriptor in C using
methods already described. Lines 2050 and 2060 POKE this address
into the ‘read any record’ routine. Line 2070 sets the record number
to zero so that line 2080 will load this sector into the record
descriptor. Line 2090 resets CHBYTE so that the first byte in the
buffer is returned in response to the next INPUT command.

You should find an improvement in the running time of the

program because there is no longer the need to read the entire tape
just to build up a map.

-+

Random access files

The ‘read any record’ routine could be used to read the record of a
file in any order. This is all you need to implement random access
files. However, as already mentioned, the Microdrive is essentially a
serial device. If you read record 3 and then want to read record 2 the
tape will not ‘back space’. Instead the entire tape will run past the
read head until record 2 comes round again. The worst possible case
is found when reading a file backwards, when each record requires
the entire tape to be read before it is found! Because the time to read
the entire tape is reasonably low (one or two seconds) there is less

142 An Expert Guide to the Spectrum

reason to consider random access techniques with the Microdrives.
The best processing times are achieved by reading records in their
normal sequence and processing as little data as possible. For
example, one possible organisation for a telephone number
directory is random access, with say, one record of a file assigned to
each letter of the alphabet. Using this organisation a telephone
number would be found by reading the record that held the entries
for all names that began with the same first letter. On average, half
the tape would have to be read to find the required record using the
‘read any record’ routine. If the file were read sequentially, record
by record, to get to the desired position then the average amount of
tape read is roughly the same. However, if every item of data in each
sector was processed in some way, then the time needed to read the
file sequentially would be very much greater. Using a sequential read
coupled with a forced skip of any irrelevant sectors (see the
sector/record list example earlier in this chapter) is likely to be as
fast as any random access method.

The continuing saga of Interface 1

The principles of the paged ROM and the Microdrive have been
described in this chapter, but this is not the end of the Interface |
story. There are still two extra types of channel, more 8K ROM
routines and a way of customising ZX BASIC to be discussed in the
two final chapters.

Chapter Eleven
Interfacel and
Communication

This chapter looks at the two other features introduced by Interface
1 - the RS232 port and the network. Both these facilities are in fact
different forms of serial communication. The RS232 port can be
used to connect a standard printer to the Spectrum, or for
communication with other computers. The network is mainly
intended as a way of establishing communications between a
number of Spectrums, but it is possible to write software to extend
the network to include other computers. The first part of the chapter
deals with the RS232 port, and some of the pitfalls of using it, and
the second part describes the Spectrum Network. Much of the
discussion of how things work builds on the ideas introduced in the
last chapter.

RS232 - almost a standard

There are a number of accepted ways of passing data between
computers., Some of them even have specified standards, but very
few of them are standard in practice. It is rare to be able to connect
two computers, or a computer and a peripheral such as a printer,
together in such a way that the connection will work immediately.
Normally it takes only a few minutes to work out the trouble and put
things right. Sometimes it can take a lot longer; you may even need a
soldering iron. In the worst cases it can prove impossible to make the
connection, but this is very rare.

RS232 is a standard for serial interfaces that specifies a great
many things in great detail. The main reason for the incompatibilities
between different RS232 interfaces is the choice of the parts of the
standard that have been implemented. For example, the simplest
RS232 interface consists of three wires — one for a signal from the
computer, one for a signal to the computer and one for an earth

144 An Expert Guide to the Spectrum

connection. The Spectrum uses two more wires than this, one to
signal that it is ready to receive data, and one to carry a signal that
the device it is connected to is ready to receive data. These two
connections are often included in an RS232 interface and are called
handshake lines. However, other connections are often included to
signal, for instance, that the device at the other end of the cable is
switched on or off. In the same way, many RS232 interfaces will
provide only one of the two handshake lines that the Spectrum uses.
All this variation can cause a great deal of difficulty in knowing what
to connect to what.

Of course, the trouble with offering advice about how to connect
something to the Spectrum is that any problems that might arise
depend as much on the ‘something’ as on the Spectrum. This means
that the only real way to tackle the problems that occur in using the
RS232 is to understand what is essential to make it work.

The Spectrum’s RS232 interface

The pin connections to the 9-way socket that carries the RS232
signals at the rear of Interface 1 are:

Pinno. use

not connected

1

2 TX - input data to Spectrum

3 RX - output data from Spectrum

4 DTR - ‘ready’ signal to Spectrum

5 CTS - ‘ready’ signal from Spectrum
6 not connected

7 ground

8 not connected

9 19 Volts

If you examine this list you will see that TX (the input data line) pairs
with CTS (the ‘ready’ output line), and RX (the output data line)
pairs with DTR (the ‘ready’ input line to the Spectrum). When the
Spectrum is receiving data, the CTS line is used to indicate that
it is ready to receive data. The device the Spectrum is connected to
must not send data to the Spectrum while CTS is low (i.e. at 0 Volts).
Ifdataissent while CTS islow, it will be ignored orread incorrectly. In

Interface 1 and Communication 145

the same way the Spectrum will not transmit data when DTR is held
low by the device that is receiving the data.
To summarise:

(1) The Spectrum will only receive data correctly when CTS (pin5) is
is high and this signal should be used to enable the device
transmitting data.

(2) The Spectrum will only transmit data when DTR (pin 4) is high
and this signal should be used by the receiving device to indicate
that it is ready for data.

Handshaking and no handshaking

The conditions for transmitting and receiving data given in the last
section are easy enough to understand, but there is one complication
that arises even when you try to connect two identical machines
together. This can best be described by saying that one machine’s
output is another’s input. For example, if you want to connect two
Spectrums together you have to connect pin 3 on the first to pin2 on
the second. That is, the output data signal has to go to the input data
pin on the other Spectrum. This seems clear enough in the case of the
data lines - i.e. pin 2 connects to pin 3 and pin 3 connectsto pin2 - but
this ‘crossover’ also applies to the handshaking lines. In other words,
the DTR and CTS lines on the first Spectrum should be connected
to the CTS and DTR lines on the second Spectrum.

This crossing over of connections is the exception rather than the
rule. Most peripherals, printers, VDUs etc. are already wired up to
take the crossover into account. On a printer you might find that pin
3is still called ‘R X data’, but now it is a data input to the printer. In
this case it is clear that the Spectrum’s pin 3 should be connected to
the printer’s pin 3. If you buy the RS232 connection cable from
Sinclair you will find that the scheme used is:

Spectrum other equipment
TX data pin 2 (TX data)
RX data pin 3 (RX data)
CTS pin$

+9V pin 6 (DSR)
ground pin 7 ground

DTR pin 20 DTR

146 An Expert Guide to the Spectrum

which will work with most printers and VDUs.

In general, if you are making up a cable to allow the Spectrum to
work with another piece of equipment, you need to have details of
how the other’s RS232 interface is arranged. Assuming it uses a 25-
pin D plug or socket, first discover whether pin 2 or pin 3 on the
device is its output (TX) pin, and connect this to pin 2 on the
Spectrum. The other pin should be connected to the Spectrum’s pin
3. The next problem is to decide where the handshake lines have to
go. Normally DTR from the Spectrum should be connected to either
DTR (pin 20), DSR (pin 6) or RTS (pin 4). The Spectrum’s CTS
signal should be connected to CTS (pin 5) on the other equipment.

On some equipment there are no handshake lines at all. As
already mentioned, the simplest RS232 interface uses only the RX,
TX and ground connections. In this case the Spectrum’s CTS (pin 5)
line can be left unconnected, and DTR (pin 4) should be connected
to +9V (pin 9). Not using CTS will mean that the device that the
Spectrum is connected to will transmit data whenever it likes, even if
the Spectrum is not ready to receive. The reason for connecting
DTR (pin4) to+9V (pin9) is to allow the Spectrum to transmit data
whenever it wants to. Of course, for this to work the receiving device
must be capable of receiving data at any time! In practice,
intermediate situations are often encountered, with RS232 interfaces
having only, say, a CTS line. In this case you can only connect up
such handshaking lines as there are, and connect the remaining
input lines either to ground or +9V depending on whether they have
to be held low or high to enable data transmission or reception.

You will appreciate from the above discussion that many different
types of problem can be encountered with RS232 connections. In
practice, things are not quite as bad as you might expect, and as long
as you identify the purpose of each connection on the other device
you should have no trouble. It is sometimes useful to connect only
the RX, TX and ground lines between the Spectrum and the other
device, and connect the handshake line inputs to either ground or
+9V to get the interface working without handshake lines. You can
then refine the interface connecting the handshake lines one by one.

RS232 data format

The RS232 interface is a serial connection. That is, when data is
passed from a computer to another device it is transmitted bit by bit.
Although transmission is one bit at a time, it is standard to send a

Interface 1 and Communication 147

group of bits in sequence to represent a character. There are a
number of choices that can be made about the way the bits are
transmitted. You can select one of a number of transmitting speeds
or baud rates, i.e. the number of bits you transmit per second. You
can also select how many bits you are going to send to represent a
single character, how many bits to signal the end of transmission of a
character, and whether or not you are going to send a parity bit to
check for transmission errors. In the case of the Spectrum the
transmission format used is

8 data bits
no parity check bit
2 stop bits

and the baud rate can be set by the user. Thus as well as making the
correct electrical connection between the Spectrum and the other
device, it is also important that it is set to receive data in the
Spectrum’s format. In most cases this only involves making sure that
both the Spectrum and the other device are using the same baud
rate.

The BASIC RS232 commands

ZX BASIC treats the RS232 interface as just another type of
channel or, to be more precise, as two new types of channel. The
channel identifiers that are used are:

b or B for binary RS232 channel and
t or T for text RS232 channel

Either channel can be OPENed to a stream in the usual way. For
example,

OPEN #4, “b”
will OPEN stream 4 to the binary RS232 channel and
OPEN #5,“t”

will OPEN stream 5 to the text RS232 channel. Once a stream
has been associated with a channel the usual stream 1/0
commands - PRINT #, INPUT # and INKEY$ # can be used to send
and receive data.

Both the b and t channels behave in the same way when the data
that is being transmitted or received is composed of nothing but

148 An Expert Guide to the Spectrum

printable characters. The difference comes from the way they treat
the Spectrum’s control codes, and other non-standard assignments
of character codes. The b channel will transmit the full 8-bit
character code of anything that is PRINTed to it, but the t channel
will only send the code if it is a printable character, or it can convert
the item into a sequence of printable characters. That is,

PRINT #4; THEN

where THEN is entered as a single keystroke, sends CODE(THEN)
or 203 over the b channel. However, if stream 4 was OPEN to the t
channel the ASCII codes for the letters T, H, E, N would be sent
instead.

The exact rules are:

For transmitting:

The b channel transmits the 8 bit character code of everythingit
is asked to PRINT

The t channel will not send control codes 0 to 31 or the graphics
characters 128 to 164, and will expand all the keywords 165 to
255 to their corresponding strings of ASCII characters

For receiving:
The b channel receives the full 8 bit code that is sent to it

The t channel will ignore the 8th bit of any code it receives, thus
restricting it to the standard 0 to 128 ASCII character set

It should be clear that the t channel is an attempt to reconcile the
Spectrum’s extensions to the standard ASCII character set. For
example, if the RS232 interface is connected to a printer,

OPEN #4, “b” :LIST #4

will list the current program; but as the keywords will be sent as
single character code, they will either not be printed or cause the
printer to do something strange. But

OPEN #4, “t” :LIST #4.

will give a perfectly readable listing, as the codes for the keywords
will be expanded to the sequence of characters that normally
represents them.

As the b channel works with the full range of character codes, it
can be used to transmit the contents of memory locations. To make

Interface 1 and Communication 149

this easier, the SAVE*, LOAD*, VERIFY* and MERGE* can all
refer to the b channel. Forexample, SAVE* “b” and LOAD* “b” are
both permissible. Of course, without special software these
commands only permit the exchange of programs between two
Spectrums. (The network provides an easier method of program
exchange between Spectrums, but the RS232 interface does have the
advantage that it can be used to transfer programs over a telephone
line with the aid of a modem.)

There is one other difference between the b and t channels that is
important, and that is the treatment of the ENTER character code.
As always, the b channel passes every code unaltered, but the t
channel replaces each ENTER (code 13) by the two-character
sequence 13,10 which is ENTER followed by line feed. Some
printers and VDUs will automatically start a new line when they
receive ENTER; others also need the line feed code. If the printer
doesn’t need the line feed code it will throw a blank line between each
line of text. There is nothing that can be done about this problem
apart from stopping the printer from starting a new line when it
receives the ENTER code. (That is, if possible, turn off the auto line
feed facility)

Notice that the t and b channels can also be used with the MOVE
command. For example, to send the data from the RS232 interface
to the screen use;

MOVE “b” TO #2

Setting the baud rate

Even though the commands for using the RS232 channels have been
given, they remain unusable because the method of setting the baud
rate hasn’t yet been described. When the Spectrum is first switched
on, the baud rate is initialised to 9600. To change it to another value
use

FORMAT “b”;baud
or
FORMAT “t”;baud

where ‘baud’ is one of 50, 110, 300, 600, 1200, 2400, 4800, 9600 and
19200. These are the standard baud rates found on most computer
equipment. In the case of the Spectrum, the baud rate can be roughly

150 An Expert Guide to the Spectrum

interpreted as ten times the number of characters transmitted per
second. So 300 baud is about 30 characters a second. Handshaking
will sometimes stop the transmission of data, so the actual rate may
be less. In most cases it is advisable to use the highest baud rate that
the two pieces of equipment can both be set to. A high baud rate
means less time waiting for data to be transferred. However, if for
any reason you are not using the handshaking lines then the
Spectrum will not receive data accurately at baud rates above 300. In
fact there is no guarantee that it will receive every character at 300
baud, but without handshaking the slower the better!

To set a non-standard baud rate you can POKE an appropriate
constant into the new two-byte system variable BAUD. The
constant is given by:

(3500000/(26*baudrate))—2.

Using both t and b

There is nothing against using both the t and b channels at the same
time. For example, many printers use ASCII codes in the region 0 to
31 as control codes to produce special printing effects, such as
enlarged characters or graphics characters. Apart from these codes a
printer is best handled via the t channel.

10 OFEN #4,"t"

20 OFEN #5,"b"

30 FRINT #53CHR$(c) I #43A%
¢ is a control code to be sent to the printer unchanged, and A$
contains text.

Principles of RS232 operation
The RS232 interface is handled by the usual system of I/ O channels

and streams described in Chapter 5. The only new feature is the
addition of another type of channel descriptor:

Byte use

0 address 8 (the error handler)
2 address 8 (the error handler)

Interface 1 and Communication 151

t or b channel identifier

address of output routine
address of input routine

11 (length of channel descriptor)

O~ A

This channel descriptor is the shortest and simplest of the newly
introduced channel descriptors. For this reason it is the one most
often copied when introducing user-defined channels, as in the
example in Chapter 12. Notice that there is no data buffer, so RS232
transmission and reception occurs without delay, unlike Microdrive
operations.

The Spectrum RS232 interface is interesting because it is mostly
software. Most other machines use special chips that will accept data
bytes and transmit them over an RS232 interface without any help
from the CPU. The Spectrum contains no such special chips;
instead, software creates the necessary signal pulses on the RS232
line in the same way that the sound or cassette pulses are created (see
Chapter 8). In this case the 1/0 port involved 1s 247, and the RS232
output line RX is controlled by the state of b0. Reading port 247
returns the state of the data input line TX, also as b0. The two
handshaking lines are associated with 1/O port 239. Reading the
port returns DTR as b3, and the state of the CTS line is set by b4.

The sequence of operations involved in sending a byte of data is:

Wait until the DTR line is high

Send the byte bit by bit using the value stored in BAUD to time
the length of each pulse.

The sequence of operations involved in receiving a byte of data is a
litle more complicated:

Examine the value in the new system variable SER_FLG at
23751.

If the value in 23751 is non-zero, then the next memory location
23752 contains the character required. After setting 23751 to
zero this is returned as the input.

If the value inSER_FLG s zero, waituntil CTS is high, then wait
for the start of transmission, signalled by the TX data line going
high for one pulse time. Following this the eight data bits are
read in and the two stop bits are monitored. Then set the CTS
line low to stop anything else being transmitted.

152 An Expert Guide to the Spectrum

If this fails to stop the transmitting device in time, another
complete character will be read in and stored in SER_FLG+1.
SER_FLG will be set to 1 toindicate that there is already a data
byte waiting. The first byte read in is returned as the input.

The description of the RS232 INPUT operations reveals that RS232
INPUT is in fact buffered, but only to the extent of one character.
This is necessary because some sending devices do not respond
quickly enough to the lowering of the CTS line to ensure that a
second character will not be sent.

Assembler and the RS232 interface

The routines within the new 8K ROM that send and receive data
using the RS232 interface can be used in assembler. The method is
basically the same as that used in calling the Microdrive routine (see
the previous chapter). The routines are called using

RST 8§
code

where the action produced depends on the value of ‘code’.

code action

29 Read a byte from the RS232 interface.
The carry flag is set if a byte is read
before time out. The result is returned in
the A register.

30 Write the byte in the A register to the
RS232 interface.

Three general purpose 1/O routines are also useful when writing
RS232 programs.

code action

27 Read keyboard. Wait until key is pressed
and return its code in the A register

28 Write character in A register to screen

without counting scrolls.

Interface 1 and Communication 153

31 Write character in A register to the ZX
printer.
32 Test the keyboard. Return with the carry

flag set if there is a key pressed.

An example of the use of these routines can be found in the next
section.

A Spectrum VDU

The main problem with using the Spectrum’s RS232 interface for
anything other than driving a printer is timing. As all the signals are
controlled by software, the handshake lines are absolutely essential
for reliable operation. Unlike other machines, there really are times
when the Spectrum is not capable of receiving or transmitting a
character.

Consider, for example, the problem of turning the Spectrum into
a VDU. Logically, the problem is quite simple. Any character
received over the RS232 interface should be PRINTed on the screen,
and any character typed on the keyboard should be transmitted on
the RS232 interface. In ZX BASIC this gives:

10 FORMAT "t"jbaud

20 DFEN #4,"t"

30 LET A%=INKEY$ ¥4

40 IF A$="" THEN GOTQO &40

S50 FRINT A%;

40 LET A®=INKEY$

70 IF A$="" THEN GOTO 30

80 FRINT #4;Aa%3

90 GOTO 30
This program works quite well as long as the handshake lines are in
use, but even then it is a little sluggish. The same idea can be
implemented in assembler as:

address assembly code comments
language

23296 LOOP RST 8 207 RS232 Input

23297 29 29

23298 JR NC,SKIP 48,2 no input

154 An Expert Guide to the Spectrum

23300 RST 8 207 screen output
23301 28 28

23302 SKIP RST 8 207 test keyboard
23303 32 32

23304 JR NC,LOOP 48,246 no key pressed
23306 RST 8 207 read key
23307 27 27

23308 RST 207 RS232 output
23309 30 30

23310 NKEY RST 8 207 test for key released
23311 32 32

23312 JR C,NKEY 56,252

23314 JR LOOP 24,236

All that is needed to use this i1s a BASIC loader:

10 FORMAT "b"31200

20 DATA 2 0"" (? “}891. 9y & 207 ’L99 01!93:1},;
48, 246,207 ,?J’g 07,30,2 07 ,32,56,252,
24,236

30 FOR A=23296 TO 233198

40 READ D

30 FOKE A,D

60 MEXT A

70 LET A=USR 23296

The performance of this program still leaves something to be
desired. The handling of the Spectrum’s keyboard using the
keyboard test and keyboard read routines works, but it disables the
auto-repeat, and it is still possible to ‘get stuck’ in the read key
routine. The solution is to write a complete custom ‘keyboard test
and read routine’ that mimics the behaviour of INKEY$. A much
more serious problem is the way the SPACE key is treated as
BREAK by the RS232 routines. Normally you have to press CAPS
SHIFT and BREAK to stop a program, but during RS232
operations just the BREAK/SPACE key will do. This makes it
virtually impossible to write any serious communication program,
such as the VDU program given above, unless you can find a way to
generate the character code for SPACE without pressing the
SPACE key!

The Spectrum’s RS232 interface is excellent for driving printers
and transferring programs between the Spectrum and other
computers, but other applications require a considerable amount of

Interface 1 and Communication 155

software development. The problem of SPACE acting as BREAK
may be cleared up in later issues of the new 8K ROM -1 cannot
imagine that this is a feature rather than a bug!

The Sinclair Network

Whereas the RS232 interface is intended to provide communication
between two devices, the network is intended to allow data transfer
between any number of Spectrums. The method of communication
used by the network is the same serial format used by the RS232
interface, but there are a number of additions to make n-way
communication possible. The hardware characteristics are altered
to allow two-way communication over a single pair of wires. At any
one moment only one of the Spectrums connected will be
transmitting data, and a number of the others will be receiving, but
the role of the data transmitter can be adopted by any machine.
The software has been extended to include two extra facilities.
Firstly, there is a way for any Spectrum to ‘claim’ the network and
become the transmitter. Secondly, with each ‘chunk’ of data
transmitted there is an address that identifies which of the other
machines the data is intended for. These two software features forma
sort of ‘rule book’ for Spectrums trying to use the net - in the jargon
they form the communications protocol. The Sinclair network’s
communications protocol is not as sophisticated as that used by
other nets, such as Ethernet, but it is suitable for many ‘group’
computer applications such as education and program development.

The BASIC net commands

The network extensions to ZX BASIC follow the usual lines of the
channel and stream extensions to allow for the Microdrives and the
RS232 interface. Of the two, the RS232 commands are closer to the
network commands. The network channel is identified by “N” or “n”
and also has to identify the station that communication is to be with.
To make this identification possible, each Spectrum connected to
the net has to be assigned a ‘station number’ using

FORMAT “n”; statnum

where ‘statnum’ is a number between | and 63. When any Spectrum
is first switched on it is initialised to be station 1, so it is important

156 An Expert Guide to the Spectrum

that everyone using the net has agreed to use a unique station
number and uses FORMAT to enforce it. In fact ‘statnum’ can be 0,
but this has a very special use that will be described later. The station
number is stored in the new system variable NTSTAT (23749), so
FORMAT “n”;statnum is equivalent to POKE 23749, statnum. To
find the station number in use:

PRINT PEEK(23749)

To OPEN a channel to send or receive data to station ‘num’ use:
OPEN #s.“n”;num

Following this OPEN, the command PRINT # can be used to send
data and INPUT # and INKEYS$ # can be used to receive data.
Notice that the OPEN command must be thought of as creating a
communications link between the Spectrum that uses the command
and the station that is referred to in the command.

There is one complication in using the net to send and receive
data: the other station must be aware it is being involved in a
communications link with another machine. If you OPEN a net
channel to, say, station 13 and station 13 isn’t interested, doesn’t
exist or is doing something else, your Spectrum will wait, possibly
forever (or until the BREAK key is pressed), trying to receive data or
transmit data to the missing station. In other words, data
transmission on the net uses full handshaking to make sure that
when data is sent it is successfully received. This need for one station
to know what another station is doing suggests that Spectrum
networks are best confined to a single room! However, it is possible
to imagine additional machine code software that would add
message switching and other sophisticated facilities found on other
networks.

The exception to the full handshaking protocol is the INKEY$ #
command. This will return a null string if there is no data being
transmitted from the station to which the stream refers. This could
be used to scan through all the stations on the net to see if any of
them are waiting, trying to send data to your station. Otherwise
INKEYS$ # works in the usual way and returns the next single
character sent.

As well as handshaking, another important characteristic of the
network channels is that they are all buffered. As with the
Microdrive channel, this buffer is part of the channel descriptor (see
later) but it is only 256 bytes. The buffering action has the same sort
of effect on the network channels that it does on the Microdrive

Interface 1 and Communication 157

channels. That is, you can write 256 characters to a network channel
before anything is sent to the receiving station, and you canread 256
bytes before the transmitting station has to transmit another buffer
of data. Also. partially filled buffers are only sent as the result of a
CLOSE# command.

In addition to the channel and stream commands, the network
can also be used to exchange ZX BASIC programs. The command

SAVE* “n™:num

will send a program to station ‘num’ which in turn would use the
command

LOAD* “n”;org

to receive it, where ‘org’ is the number of the station sending the
program. Once again, the communication is with full handshaking,
and both the receiving and transmitting stations will wait until their
counterpart is ready. You can also use MERGE* and VERIFY* in
the same way.

Station O and broadcasting

The network commands described so far enable data and programs
to be exchanged between any two stations. However, it is often
necessary to transfer the same program from one Spectrum to a
number of others. This can be achieved using station number 0, the
broadcast station. Data transmitted to station 0 will be transmitted
at once, without handshaking, and any number of stations may
receive it. For example, to broadcast a program all the receiving
stations should first enter

LOAD* *n™0
They will then wait for the transmitting station to enter
SAVE* “n™;0

and send the program currently in its memory. Notice that it is
important for all the receiving stations to have entered LOAD*
before the transmitting station sends the program.

Principles of operation

The network uses a two-wire connection; a signal line carrying

158 An Expert Guide to the Spectrum

pulses varying between 0 and 5V, and a ground return line. The most
difficult part of the network’s operation is making sure that only one
Spectrum is transmitting data at any one time. If two machines do
transmit at the same time the high state(5V) has precedence over the
low (0V) state. In other words, if one machine is trying to drive the
net high (i.e. 5V) and one is trying to drive it low (i.e. 0V) the net will
adopt the high state. However, this condition, known as net
contention, has to be avoided by the use of the net protocol. Before a
machine transmits data it has to gain control of the net and so stop
any other machine using it.

When a station wants to send data it first monitors the state of the
net long enough to detect data pulses if the net is currently in the
middle of transmitting a block of data. If no pulses are detected, the
station transmits a single byte containing the station number. As it
transmits each pulse, it monitors the net to make sure the pulses are
as it intended. If it finds a discrepancy - if, for instance, it has sent a
low pulse and the net is in a high state — this can only mean that
another station is trying to gain control of the net at the same time.
When this happens the station that detects the error stops
transmitting and starts the process of trying to claim the net all over
again.

Once the net is claimed, a header is sent which contains the
number of the station the data is intended for and the number of the
station that wants to send the data. The byte that was sent to gain
control of the net is detected by all the stations trying to read data
from the net, and they all examine the header. Any station that finds
that the header matches its station number, and comes from a
station from which it expects data, will then send an acknowledge
byte (set to). If this is received by the transmitting station a data
block is sent, and the receiving station reads it in. If the
acknowledgement byte is not received, the transmitting station
repeats the whole operation, including claiming the net. The only
time that this protocol can go wrong is if two stations try to claim the
net at the same time. In this case the station with the lowest station
number will be the first to detect the error and stop transmitting. The
other station will then continue sending its claiming byte and
complete its data transmission. Using this protocol a number of
machines can be sending data over the net, each one waiting its turn
to claim the net and transmit its data block.

Interface 1 and Communication 159

The network channel descriptor

The network introduces yet another channel descriptor to ZX

BASIC. Its format is:

byte name

N-IRS RV N S I
I

the header block
Il NCIRIS
12 NCSELF

13 NCNUM

15 NCTYPE

16 NCOBL

17 NCDCS

18 NCHCS
general infomation

19 NCCUR
20 NCIBL

data block
21 NCB

comments

address 8 the error handler

address 8 the error handler

“N” the channel identifier

address of output routine

address of input routine

276 length of the channel descriptor

the destination station number

the station number at the time the
channel was OPENed

data block number

type of data block (0=data |=EOF)
number of data bytes in block

data checksum

the header checksum

the position of the last character
taken from buffer
the number of bytes in the input buffer

255 byte data buffer

The format of the channel descriptor is straightforward, and
should be compared to the channel descriptions for the Microdrives
and the RS232 interface. Notice that NCSELF contains the station
number at the time of OPENing. This means that it is quite possible
to have a number of net channels OPEN, each with a different

station identifier.

160 An Expert Guide to the Spectrum
The net from assembler

There are a number of machine code routines in the new 8K ROM
that can be used by the assembly language programmer. The calling
procedure is the same as for the Microdrives and the RS232
interface, that is,

RST 8
code

where ‘code’ can be any of:

code operation

45 OPEN a temporary net channel. The system
variable D_STR should contain the destination
station number and NTSTAT (23749) the current
station number.

46 CLOSE a network channel. The IX register should
contain the address of the channel descriptor.

47 READ a net record. The IX register should
contain the address of the channel descriptor.

48 Write a net record. The IX register should contain

the address of the channel descriptor. A=0 will
write data. A=1 will send an end of file record.

Note that in the above descriptions a net record is a complete
network transaction, including the initial control byte, header and
data block. The ‘read a net record’ routine should return with the
carry flag set if no record is received in a reasonable amount of time.
However, there seems to be a bug that corrupts the carry flag and
makes the routine almost unusable. This may be corrected in later
versions of the new 8K ROM.

Service Spectrums

One of the desirable features of a network is the sharing of
peripherals. Obviously if the same program is to be loaded into all
the machines connected to a net, then only one machine needs to
have Microdrives of its own. In the same way, it would be useful to
be able to share a printer between all the machines on the net. This

Interface 1 and Communication 161

can most easily be achieved by designating one machine as a printer
and Microdrive server. This machine simply runs a program that
accepts data from the network and routes it to the appropriate
peripheral. There are many ways of implementing a server program
(one can be found in the Interface | manual), but none of the
methods that I have seen are entirely satisfactory. However, it is
important to realise that to share peripherals between a number of
Spectrums a machine must be set aside to run the server program,
and this reduces the number of available machines by one.

Chapter Twelve
Advanced Programming
Applications

This final chapter presents a collection of self-contained applica-
tions. Most of them use information from the earlier chapters, but
some new material is also introduced. Advanced programming can
take one of two forms. The first is concerned with writing good,
clear, easy-to-use and bug-free programs. The second is that
described in this chapter, and is concerned with using the facilities of
the machine in novel ways. However, this sort of advanced
programming assumes you have mastered the art of writing simple
programs that have a clear structure, operate in a user-friendly
fashion, and contain a minimum of bugs. Being clever with a
machine is no reason for abandoning good programming style!

Byte arrays

Sometimes the need to store a large array of numbers with a limited
range makes the direct use of a BASIC numeric array very
inefficient. Each element of the array uses five bytes, but if the
numbers lie within the range 0 to 255 then theoretically each element
need only occupy a single byte. In practice it is quite easy to create
special byte arrays using nothing but PEEK and POKE. Our
requirements are for a statement that will ‘dimension’ the array by
reserving N bytes for it, a function that will return the Ith element,
and a function that will store the Ith element. The dimensioning is
not difficult, as the CLEAR command can be used to reserve any
number of bytes for special use. However, for the subroutine to work
without modification in a 16K or 48K Spectrum it must
automatically find the highest memory location in use. This can be
done by PEEKing the system variable RAMTOP at 23730. Thus the
function

DEF FNd(N)=PEEK 23730+256*PEEK 23731-N

Advanced Programming Applications 163

returns the address N bytes lower down than the highest memory
location currently in use, and the statement

CLEAR FNd(N)

will reserve N memory locations for the byte array. The functions to
store and retrieve data are

DEF FNs(I)=PEEK 23730+256*PEEK(23731)+1
DEF FNr (I)=PEEK(FNs(I))

The statement
POKE FNs (1),D

will store the data D in array element I and
LET D=FNr (I)

will retrieve the data stored in element I and store it in D.
For an example of the use of these ideas, the following program
stores 256 numbers in a byte array:

20 CLEAR FMN4(ZH56)
30 FOR X=0 TO 285%
40 FOKE FNs(I),I
50 MEXT I

40 FOR X=0 TO 299
70 FRINT FNr{Xl)
80 MNEXT I
Using a byte array only takes .25K; a standard array would need
1.25K to store the same data.
The same technique can be used to store numbers greater than 255
by using more than one memory location per element.

Passing parameters to USR functions

The advantage of machine code routines implemented via USR
functions has been proven many times in earlier chapters. However,
most of the examples have carried out some action without
attempting to return a value in the manner of a normal function. In
fact USR functions return the 16-bit number in the BC register pair.
For example, the program

LD BC,42
RET

164 An Expert Guide to the Spectrum

will return the value of 42 if called as a USR function. What limits
the usefulness of machine code USR functions is the difficulty of
passing parameters to the routines. One method that has been used a
number of times in earlier chapters is to use fixed memory locations
as post boxes. A post box is used to pass data to machine code user
routines by POKEing it into the locations before calling the routine
with USR. This works, but it isn’t very flexible and doesn’t fit in with
the way other functions work.

There is a way of writing machine code routines so that they
accept standard ZX BASIC parameters. The method relies on
building the USR call into a user-defined function with the required
number of parameters. For example, if you want a machine code
routine that will add two 16-bit positive numbers together you could
define a function

DEF FNa(x,y)=USR 23296

assuming that the machine code is stored in the ZX printer buffer.
The only problem that remains is how the USR function is to gain
access to the values of the parameters ‘x’ and ‘y’. The solution lies in
the system variable DEFADD (23563), which contains the address
of the first parameter of a user-defined function while the function is
being evaluated. Thus, in the program

10 DEF FiNa(,4)=USR 23296

20 FRINT FNa(2,3)
DEFADD will hold the address of the ‘X’ in line 10 when the
function at line 20 is executed. This means that the USR routine can
use DEFADD to find the memory location that holds the ‘x’ in line
10. You may be wondering why the location of the parameter name
used in a function is of any use in finding its value. The answer is that
when a user-defined function is being evaluated by ZX BASIC, each
of the actual parameters used are themselves evaluated and then
stored in five bytes following each parameter name in the function
definition. This means that each of the parameters is evaluated in
line 20, giving the result 2 for x and 3 fory. (Of course the evaluation
is often much more complicated, involving full arithmetic
expressions and other functions.) Then the result 2 is stored in the
five bytes following the letter x in line 10, and the result 3 is stored in
the five bytes following the letter y in line 10. Each of these five bytes
is preceded by a byte containing 14, the control code indicating that
a number follows. This stops the parameter values appearing in
program listings. Thus at the time the machine code USR routine is

Advanced Programming Applications 165

called, the data stored in line 10 is:

byte
(] RS SSTS UES TE QSRR O () RN S

F 14 | five byte constant | , |y five byte constant

DEFADD

By using the value in DEFADD the USR routine can easily pick up
the values of the parameters.

Although it is possible to write routines that process full five-byte
floating point numbers, it is much easier if parameter values are
restricted to 16-bit integers. A 16-bit integer value is stored in a
special format using the second, third and fourth bytes, In fact, if
only positive integers are used the 16-bit value can be found in the
third and fourth byte of the five bytes

The routine to add two 16-bit positive numbers is now easy to
write:

address assembly code comment
language

23296 LD 1X,(23563) 221,42,11,92 load IX with the
address of Ist parameter

23300 LDA A, (IX+4) 221,1264 load A with Ist byte
of Ist parameter

23303 ADD A, (IX+12) 221,134,12 add Ist byte of 2nd
parameter to A

23306 LD C,A 79 store result in C

23307 LD A, (IX+5) 221,126,5 load A with the 2nd byte
of the 1st parameter

23310 ADC A,(IX+13) 221,142,13 add 2nd byte of 2nd

parameter
23313 LD B,A 71 store result
23314 RET 201 return to BASIC

The following ZX BASIC program loads the routine and gives an
example of its use:
10 DATA 221,42,11,92.221,126,4,221,134,12,

166 An Expert Guide to the Spectrum

20 FOR A=23296 TO 23314
30 READ D

40 FORE A,D

50 MNEXT A

&0 DEF FMNa(i,w)=USR 23294

70 INFUT A,E

80 FRINT FNa(a,b)

20 GOTO 70
If you enter integer values in response to line 70 you will find that
their sum is PRINTed by line 80. You might like to experiment with
using FNa in more complicated expressions. For example, change
line 80 to

80 FRINT FNa(A,FNa(A,A))

to add A to A+A. The point is that this method of passing
parameters to a machine code routine results in a function that can
be mixed with other functions, and used in exactly the same way that
they can. Of course, adding two 16-bit numbers together is not a very
useful operation for a machine code function, but in the next section
the same idea will be used to add the standard logical functions to
ZX BASIC.

Bit manipulation - AND, OR and NOT

One of the common features of programs that use a machine’s
hardware directly is hit manipulation. The reason for this is that the
state of a particular bit or group of bits often reflects or controls the
condition of some hardware. Another reason for wanting to
examine and change bits, or groups of bits, is the use of different
parts of a byte to hold different pieces of information. For example,
an attribute byte uses b7 for flashing on/ off, b6 for bright on/ off,
and b5 to b3 and b2 to b0 for paper and ink colours respectively.

In other versions of BASIC, bit manipulation is performed using
the logical operators AND, OR and NOT, but in ZX BASIC these
operators behave differently. In normal use in ZX BASIC these
operators work with the values 0 and 1, representing false and true
respectively. For example, the result of X AND yis | if bothx andy
are 1, and 0 if either of them is 0. This corresponds to the usual
English interpretation of AND that ‘x and y’ is true only if both x is
true and y is true. However, ZX BASIC interprets any non-zero

Advanced Programming Applications 167

value as true, and this gives rise to the following results when x and y
are other then 0 or I:

xANDy = x if y is non-zero
=0ifyis0
x OR y = lify is non-zero
= xifyis0
NOT x = 0if xis non-zero
= lif xiszero

These results are useful for writing conditional expressions as
described in Chapter 13 of the Spectrum manual, but they are not
suitable for bit manipulation.

Other versions of BASIC implement AND, OR and NOT with
bitwise operations that are much more useful in bit manipulation.
For example, the result of a bitwise AND operation is arrived at by
ANDing the corresponding bits in each of its operands: b0 of the
result is arrived at by ANDing b0 of the first operand with b0 of the
second, and so on. Thus the result of a bitwise AND of 7 and 12 is

7 = 00000111
12 = 00001100
7 AND 12 = 00000100

or 4 in decimal. The Spectrum’s AND operation gives the result 7.

The importance of bitwise operations for bit manipulation is that
you can set any bit or group of bits to zero by ANDing them with a
mask value, and you can set any bit or group of bits to one by ORing
them with a mask value. To be precise:

(1) To set any bits to zero, construct a mask value consisting of
ones in every bit position apart from the bit positions that you
want to set to zero. This mask should then be bitwise ANDed
with the value that contains the bits that are to be set to zero.

(2) To set any bits to one, construct a mask value consisting of
zeros in every bit position apart from the bit positions that you
want to set to one. This mask should then be bitwise ORed with
the value that contains the bits that are to be set to one.

For example, to set b7 to b4 to zero the byte would have to be bitwise
ANDed with

b7 b6 bS5 b4 b3 b2 bl b0
0 T R0 e IR 1) L

168 An Expert Guide to the Spectrum

i.e. 151in decimal. To set b7 and b6 to one the byte would have to be
bitwise ORed with

b7 b6 b5 b4 b3 b2 bl b0
IR0 0SS0 S R0 0

1.e. 192 in decimal.

Of course, the trouble with these methods is that ZX BASIC
doesn’t have bitwise AND, OR and NOT operators. This can easily
be remedied using the technique described in the previous section for
parameter passing to USR routines. The following assembly
language routine will perform the bitwise AND between two 16-bit
integers:

address assembly code comment
language
23296 LD I1X,(23563) 221,42,11,92 get parameter address
23300 LD A,(IX+4) 221,1264 Ist byte Ist parameter
23303 AND (IX+12) 221,166,12 AND with Ist byte of 2nd paramete
23306 LD C,A 79 store result
23307 LD A, (IX+5) 221,126,5 2nd byte Ist parameter
23310 AND (IX+13) 221,166,13 AND wjth 2nd byte of 2nd paramete
23313 LD BA 71 store result
23314 RET 201 return to BASIC

If this AND routine is compared with the 16-bit addition routine
given earlier, you will see that the only difference is that the ADD
instructions have been changed to AND. In the same way, a bitwise
OR routine can be produced by changing the two AND instructions
to

OR (IX+12) 221,182,12
and
OR (IX+13) 221,182,13

To complete the set, a single parameter 16-bit NOT routine is
provided in the following way:

Address assembly language code comment

23296 LD IX, (23563) 221,42,11,92 get parameter address
23300 LD A, (IX+4) 221,126,4 load Ist byte

Advanced Programming Applications 169

23303 (€3 47 complement (NOT) A
23304 LD CA 79 store result

23305 LD A, (1X.5) 221,126,5 load 2nd byte

23308 (€3 24l 47 complement (NOT) A
23309 LD B.A 71 store result

23310 RET 201 return to BASIC

Although these three routines have been described as if they were
each intended to be loaded at the start of the printer buffer, they are
in fact position independent, and can be loaded anywhere in
memory. The following BASIC program loads the machine code for
all three routines into the printer buffer, and defines the three
functions:

FNa(x.y) which performs the bitwise AND of x and y
FNo(x,y) which performs the bitwise OR of x and y and
FNn(x) which performs the bitwise NOT of x

10 DATA 221,42,11,92,221,126,4,821,1606,
1",/9gt. JgjsCiy-.lytz.l)jC‘C‘ylt 11; U.I

20 DATA 221,42,11,92,221 PhHL4,221,182,
12,7‘?5'??131 J‘Jg‘.;s??.loluyyl ‘9/19&[]]

320 DAETA :’21»7“”’@1.]4‘;)2-@: J;-jx.(t\ q;ﬁ‘*l}f‘}’:’
225 Y26 50 A7 21,20

40 FOR A=Z3296 TO 23348
S0 READ D

A0 FOKE A,D

0 MEXT f

100 DEF FNa(X,Y)=USR 23296
110 DEF FMo(X,Y)=USR 23315
120 DEF FMn(X)=USR 23334

130 IMPUT &,k
140 PRINT FMa (A EY,FMNo(ALE) FNn(A)
150 cOTO 130

As an example of how the AND, OR and NOT functions can be
used to simplify things, consider the problem of separating out the
information supplied by the ATTR function. In Chapter 6 this
problem was solved by bit manipulation techniques based on
multiplying and dividing by powers of two. Multiplying by two is
equivalent to shifting the pattern of bits that represents a value one

170 An Expert Guide to the Spectrum

place to the left, and adding a zero to the right. This is equivalent to
what happens to the pattern of digits when multiplied by 10.
Similarly, dividing by 2 and taking the INTeger part is equivalent to
shifting the bit pattern to the right and losing the old value of b0.
Using these shift operations it is possible to isolate groups of bits
within a byte, and it is even possible to set individual bits to 0 and 1,
but it is usually very involved. Using the bitwise logical functions
makes the isolation of parts of a byte very easy. For example, to
isolate the ink colour (b2,bl,b0) from ATTR is now simple:

ink=FNa(BIN 111,ATTR(line,col))
To isolate the paper colour (5,b4,b3) is just as simple:
paper=INT(FNa(BIN 111000,ATTR(line,col))/8)
Finally, bright and flash are given by
bright=INT(FNa(BIN 1000000,ATTR(line,col))/64)
and

flash=INT(FNa(BIN 10000000, ATTR(line,col))/ 128

User-defined channels and Interface 1

The subject of adding user-defined channels to the basic Spectrum
has already been covered in Chapter 5. However, the addition of
Interface 1 and the new 8K ROM introduces an extended format for
additional channel descriptors. With Interface 1 connected, the
smallest channel descriptor corresponds to the 11 bytes that describe
an RS232 channel. Of course, there is nothing wrong with changing
the address of the I/ O handler in the channel descriptor, and the first
example given in the section Creating your own channels in Chapter
5 will work with Interface 1 connected. However, if you are going to
create an entire channel descriptor, it is better to make it fit in with
the extended formats introduced by the 8K ROM.

The channel descriptor for your new channel should have the
following format:

byte
0 address of output routine
2 address of input routine

4 one letter channel name

Advanced Programming Applications 171

5 40 address of 8K ROM error routine
7 40 address of 8K ROM error routine
8 11 length of channel descriptor

The only difference between this and the RS232 channel descriptor
is the use of the first four bytes to hold the addresses of the 1/0
handlers, and bytes 5 to 7 to hold the address of the error handler in
the 8K ROM. The reason for this is that any [/ O handlers that you
write are going to be stored in RAM and not in the new!8K ROM.

Apart from this change in format, the channel descriptor also has
to be stored in the channels area of memory rather than in the printer
buffer, as in Chapter 5. To accomplish this, space of 11 bytes must be
made in the channels area using the 16K ROM routine MAKESP
(5717). This will produce an area of RAM for any purpose by
shifting all of the used areas of RAM up by the desired amount, and
correcting all the system variables that are affected by this change.
The amount of space to be created is passed in the BC register pair,
and the address of the first location of the free area is passed in the
HL register pair. Thus

LD BC,100
LD HL,23700
CALL 5717

will create a free area 100 bytes long starting at 23700. When a new
channel descriptor is added to the channels area, the extra space
required is positioned at the end of all the existing channel
descriptors. Thus the area for a user-defined channel should be
created starting at one less than the address stored in the system
variable PROG. The following routine will create the required 11
bytes of space and insert a new channel descriptor:

address assembly code comment
language

make 11 bytes of room

23296 LD HL, (23635) 42,83,92 23635 is PROG

23299 DEC HL 43 HL=end of chan. area
23300 PUSH HL 229 save HL

23301 LD BC,l11 EHED amount of space needed

23304 CALL 5717 205,85,22 make room

172 An Expert Guide to the Spectrum

move the channel descriptor
into the channels area

23307 LD HL,23338 33,4291 move the channel
23310 POP DE 209 descriptor given
23311 PUSH DE 213 at the end of this
23312 LD BC,11 1,11,0 routine into the
23315 LDIR 237,176 11 bytes of free space

calculate offset for
stream table

23317 IPOPHI 225 calculate ‘offset’
23318 LD BC,(23631) 237,75,79,92 value for
23322 AND A 167 stream table
23323 SBC HL,BC 237,66
23325 INC HL 35
store in stream table

23326 LD (23582),HL 34,30,92 store in stream 4’s
23329 RET 201 entry

output driver
23330 OUT LD BC,245 1,254,0 output routine
23333 OUT (C),A 237.121
23335 RET 201

input driver
23336 IN RSTS8 207 input routine
23337 DEFB 18 18 invalid device error

channel descriptor

23338 DEFB 34 34 address of OUT routine
23339 DEFB 91 91

23340 DEFB 40 40 address of IN routine
23341 DEFB 91 91

23342 DEFB“E" 69 channel identifier

23343 DEFB 40 40 error handler

23344 DEFB 0 0

23345 DEFB 40 40 error handler

23346 DEFB 0 0

23347 DEFB 11 11 length of channel

23348 DEFB 0 0

Advanced Programming Applications 173

The output and input routines that the channel descriptor uses are
the same as used in the examples in Chapter 5, and simply send data
to the border port. Although this routine will OPEN stream 4 by
default, this can be changed by storing the address of a different
stream table entry in locations 23327 and 23328.

The ZX BASIC program given below loads the machine code
routine and provides an example of its use.

10 DATA 283,92,43,229,1,11,0,205,8%5, 2%

2%

20 DATA 33 4‘,91,'0”;?]‘ 1,11,0,237,176

30 DQTA LLJ’LB/ 7d,/9 9&’16’#”“1,66’&
40 DATA 34,30,92,201

G0 DATA 1,¢u4,0 237,121,201

60 DATA 207,18

70 DATA 34,91,40,91,:,69,490,0,90,0,11,0
80 FOR A=23296 TO 23348

?0 READ D

100 FOKE #&,D

110 MEXT A

120 LET S=43GA85UE 1000
130 FRINT #4303

140 FRINT #4373

150 GOTO 130

1000 LET A=Z23574+2x8

1010 FOKE 23327,A~ IN'!'((\/"'%&)X 256
1020 FPOKE Z23328,INT(A/Z2E6

1030 LET A=USR 23296

1040 RETURN

Lines 10 to 110 form the usual machine code loader. Subroutine
1000 will OPEN stream S to the new channel descriptor, and lines
130 to 150 PRINT 0 and 7 to the border channel, so making it flash
black and white. Notice that this method of adding a user-defined
channel will work both with and without Interface 1 connected.

Adding commands to ZX BASIC

With Interface 1 attached, creating new ZX BASIC commands is
fairly easy as long as you are a good Z80 assembly language
programmer. The key to adding your own commands is the way that
errors are handled when Interface 1 is connected. When an error

174 An Expert Guide to the Spectrum

occurs, a RST 8 command is used to call the standard error handler.
However, as already described, the error call is intercepted by
Interface | and the new 8K ROM is paged in. This examines the
nature of the error and checks to see if the command that has caused
it can be correctly handled by it - that is, if it is one of the new
commands implemented by the 8K ROM. If it is one of its
commands, the appropriate machine code routine is called, and then
control is returned to the standard 16K ROM. If the command is not
recognised by the 8K ROM, control is returned to the [6K ROM at
the address given by the new system variable VECTOR (23735).
Normally this contains the address of a final error handling routine,
but this address can be changed to transfer control to a user-supplied
routine that makes a final attempt to recognise and implement
whatever command has been rejected by both the 16K and the 8K
ROM.

Changing the address in VECTOR effectively intercepts the
normal processing of faulty ZX BASIC and extended ZX BASIC
statements. This implies that any command added to BASIC in this
way must normally cause an error. For example you could add
commands such as

Hil
ASN
PAUSE*

each of which causes an error because it is not recognised by either
ROM. This guarantees that its processing will be passed on to the
routine that VECTOR ‘points to’.

In practice, adding commands is quite involved, and a good
knowledge of the layout of the 16K ROM is essential. If you are
going to extend ZX BASIC then there is no way you can avoid using
many of its routines. However, when control is passed to your
routine via VECTOR, the new 8K ROM is still paged in. To call
routines in the 16K ROM you should use

RST 16
DEFW address

where ‘address’ is the address of the 16K routine that you want to
use. All the registers are returned as the 16K ROM routine leaves
them. While the 8K ROM is paged in, all of the RST addresses are
different from what you would expect with the I6K ROM in action.
The most important are:

Advanced Programming Applications 175

RST 32 report an 8K ROM error,

the error code follows the RST 32
RST 40 report a 16K ROM error,

the error code is stored in ERRNO
RST 48 create new system variables

Routines to implement new commands always have the same
overall form:

(1) a syntax checker

This checks to see if the new command has the correct form. Ifit
hasn’t, then an error should be reported by jumpingto location
496. The syntax check should scan the line to its end and leave
CH_ADD pointing to the end of the line. The end of the
statement should be tested for by calling subroutine 1463 in the
8K ROM. If the syntax is only being checked, control will not
return from this subroutine, but if the program is being RUN
then control passes on to the second half of the routine.

(2) a RUN time module

This part of the routine actually does the work required to
implement the new command. When the RUN time module is
finished. it should return control to ZX BASIC by jumping to
1473 in the 8K ROM.

Two 16K ROM routines that are indispensible in writing new
commands are

address function

24 get current character in BASIC line in A register

32 get next character in BASIC line in the A register.
Successive calls to this routine will advance the
current character, so scanning the line

The ‘next character’ routine will automatically skip over spaces and
control codes, so it should always return the next ‘useful’ character.

As a simple example of adding a command, the following routine
implements the command

PAUSE*

which will halt processing until a key is pressed.

176 An Expert Guide to the Spectrum

address assembly code comment
language

syntax check

23296 RST 16 215 get command code

23297 24 24,0

23299 CP 242 254,242 PAUSE ?

23301 JP NZ.,ERR 194.240,1 error

23304 RST 16 215 get next char.

23305 32 32,0

23307 CP 42 254 42 is 1t **°

23309 JP NZ.ERR 194,240,1 error

23312 RST 16 215 move to end of statement

23313 32 320

23315 CALL CKEND 205,183,5 Check for end of statement
run time

23318 LOOP XOR A 175 zero A

23319 IN A, (254) 219,254 scan keyboard

23321 AND 3I 230,31 keep only lower 5 bits

23323 SUB 31 214,31 A=31 if no key pressed

23325 JP Z,LOOP 202,22.91 loop until key pressed
23328 JP COMEND 195,193,5 return to 16K ROM

The syntax check part of the routine tests for the keyword PAUSE,
and then the character “*”. Aslongas it finds them, control is passed
to CKEND which only returns control to the routine if the BASIC
program is being RUN. The RUN time part of the routine simply
loops until a key is pressed, and then returns via COMEND which
pages in the I6K ROM and allows the BASIC program to continue.
The following BASIC program loads the machine code and POKEs
the new value to VECTOR.

10 DATA 215,24,0,254,242,194,240,
1,215,32,0,254,42,194,2440,
1,215%,32,0,205,183,5

20 DATA 175,219,254,230,31,214,231,
202,22,91,195,193,5

30 FOR A=23296 TO 23330

40 READ D

50 FOKE A,D

60 NEXT &

Advanced Programming Applications 177

70 FOKE 23735,0
80 FOKE 23736,%1

After running this program the command PAUSE * will be accepted
as part of a program, and will cause the program to wait until a key is
pressed.

Routines to add other new BASIC commands take the same form
-~ a syntax checker and a RUN time module - but normally the RUN
time module would be a lot more complicated than the one given in
the example.

A stats program

The last few examples have made a great deal of use of Z80 assembly
language. To illustrate the way that knowledge of the internal
workings of the Spectrum can prove useful, even in apparently
straightforward ZX BASIC programs, the following example
presents a statistics program that will edit data, calculate statistics,
plot histograms and save and load data on tape.

The first problem is how to store the data to be analysed. The most
obvious method is to use a one-dimensional numericarray. This can
easily be SAVEd and LOADed, and allows as much data as can be
held in RAM to be analysed and edited rapidly. However, using an
array is not without its problems. The first is that when an array is
LOADed using

LOAD *“filename” DATA D()

the number of elements in the array is not immediately accessible.
When data is created by the program, it is not difficult to keep track
of the number of elements in a variable - N, say. The problem is how
to set the value of N when an array is read in from tape. One answer
would be to store N in one of the array elements before it was written
out, but this is an unnecessary complication to the data storage
scheme. Using the information about the format of array storage
given in Chapter 4 (see Fig. 4.1), it is possible to write a few lines of
ZX BASIC that will PEEK the dimension of the array. The question
is how to find the position in memory of the start of the array. One
way would be to write an assembly language routine that searched
the variables area for the array, but there is a much simpler way. The
system variable DEST (23629) holds the address of the destination
variable during an assignment. Thus if we want to find the address of

178 An Expert Guide to the Spectrum

the first element of the array D, all that is necessary is

LET T=D(1)
LET D(1)=PEEK 23629+256*PEEK 23630

Following this

LET N=PEEK(D(1)-1)+256*PEEK(D(1))
LET D(1)=T

will store the dimension of the array in N and restore the value in
D(1).

The only other real problem is how to add data to an existing
array. If the array holds N values, and the user wishes to add M
values, then the array has to be extended to DIM D(N-+M) without
losing any of the original data. This could also be achieved using an
assembly language routine, but once again ZX BASIC is enough. To
extend the array D to N+M, first dimension an array DIM E(N) and
copy all of the existing data from D to E. Then re-dimension D to
DIM D(N+M) and copy all the data back to D leaving M
elements free, ready for the new data. Finally re-dimension the
array E to DIM E(1) to release the space it occupied. Not the fastest
method, but very simple!

Now that these two problems have been solved the resulting stats
program is:

10 REM stats program

500 CLS

o130 PRINT TAE 5348 ¢t 2 & i a4 3 o av
520 FRINT AT 4,0

920 PRINT "(1) Enter new data"

G940 FRINT "(2) Generate random data"
S50 FRINT "(3) Edit data"

560 FRINT "(4) Save/lLoad data"

G970 FRINT "(%5) Czalceulate Statistica
G980 FRINT "(&6) Flot histogram!

5920 FRINT "(7) Quit"

H00 FRINT AT 21,038"Type reauired rumber"
A&10 INFUT el

320 IF sel=1 THEM GOSUE 2000

430 IF sel=2 THEM GOSUR 1000

640 IF sel=3 THEN GOSUE 4000

H50 IF sel=4 THEN GOSUER 1500

660 IF sel=% THEMN GOSUER 5500

670 IF sel=4& THEN GOSUER 4000

6810

690
1000
1010
1020
1030
1040
1050
1060

1070
1080
1090
1100
1110
1120
11340
1140
1150
1140
1170
1180
1190
1200
1210
1220
1230
1240
1250
12790

1800
1510
1532

1530
1540
1850
14560
1570
1580
1400

1510
1620
1630

Advanced Programming Applications 179

IF sel=7 THEM S8TOF
GCOTO 500

CLs

FRINT "Random data

FRINT "How marnyg values')

INFUT

FRINT

DIM ddlm)

FRINT AT 3,03"Fractional or integer
dats /i)

INFUT a¢

IF a$-=x"f" AND sé<>="i" THEM GOTO 1060
FRINT =%

LET t=0

IF a$="4i" THEN LET t=1

FRINT AT 4,03"]lowest value "3
INFUT 1

FRINT 1

FRINT "hiaghest valoue "}

INFUT t

FRIMNMT t

IF th=l THEM GOTO 1210

FRINT "highest<lowest!"

coOTO 1120

FOR di=1 TO n

LET d¢id=RND x%x{h=-1+t)+]

IF te=1 THEN LET d(id)=INT d(i)
FRIMNT "data valoe "$if" = "3d(i
HEXT i

GOTO 8900

cLS

FRINT "Save or load dats /1"

INFUT =4

IF ad-x"1" AND af<x"s" THEN COTO 1500
IF as="1" THEN GOTO 1400

FRIMT "Filename "

INFUT 4%

SaVE ¢ DATA od()

GOTO 8900

FRINT "Are vou sure'’" you want to Joad
data"

INFUT =%

IF as="rn" THEN GOTO 8900

IF a$-x"w" THEN G0OT0O 1400

180 An Expert Guide to the Spectrum

14640 FRINT "Filename "

1650 INFUT 4%

1660 LOAD 4 DATA ()

1670 LET t=d(1)>

1680 LET d(1)=FEEK 23629+Z25&XPFEK 23430
1690 LET rm=FEEK (d(1)-1)+256XFEEK (1)
1700 LET d(1)=t

1710 RETURN

2000 LET m=0

2010 LET =0

2020 LET l=d(1>
2030 LET h=1l

2040 FOR i=1 TO n
2050 LET m=mtd (i)
20460 IF 1xd(i) THEN LE’
2070 IF h=ed(id> THEM |
2080 MEXT i

2090 LET m=m/n

2100 FOR i=1 TO n

2110 LET gs=s+(d{id)-m)X{(d{(i)-m)
2120 MNEXT i

2130 LET s=a/(rn=-1)

2140 RETURNM

T 1=d(i)
CET o hemd (i)

2500 CLS

2510 FPRINT "rmuomber of valoues= "in
2520 FPRINT "mamimam= "jh

2530 FRINT "mindimum= "1

2540 FRINT ”""8!"!‘3&".“‘:’ ”;h""].
2350 FRINT "mesps ";M

2560 PRINT "variasnce= "}s
2570 PRINT "standard dev.= "$5QR (&)
2580 GOTO 8900

3000 CL®

3010 FPRINT "Data input"

3020 PRINT "how marnyg values 23
3030 INFUT n

3040 FRINT

3050 DIM dim)

30460 FOR i=1 TO0 n

3070 FRINT AT Z1,03"value"ii" = "3
3080 INFUT d(i)

3090 FRINT d(idt FRINT

3100
3110
3120

4000
4010
40210
4030
4040
40350
4040
40710
4080
4090
4100
41110
g2t
4130
4140
4150

4200
4Z110
4220
4230
47240

4250
4260
4270
4280
4290

4200
4210
4320
4330

4500
4510
4520
45310
4540
4550
4550

Advanced Programming Applications 181

MEXT i
FRIMT "data input complete!
GOTO 8200

CLS

FRINT TAE S3"Edit Data"

FRINT AT S,0

FRIEN IS Y T sde aat gt

FRINT "(2) alter data"

FRINT "(2) delete data'

FRINT "(4) add data"

FRINT "(5) return to main merm®
FRINMT 46T 21,03"Type reaquirved number!
INFUT ed

IF ed=1 THENM GOSLIE 4200
IF ed=2 THEMN CGOSLE 4500
IF ed=323 THEM GOSUE 4400
IF ed=4 THEM GOSUE 4800
IF ed=5% THEM RETURN
GOTO 4000

CLS

FRINMT "list starting at ?';
INFUT 1

FRIMT 1

FRINT "list erdding at (~1 will Jist
to end)?

INFLT

FRIMT thi FRINT

IF he0 THEN LET ten

IF 1=k THEM GOTO 4200

IF 1xrm OR tvere QRO OR Bsd THEM
GOTO 4200

FOR i=]l TO h

FIRINT “Ydats valuoe "3if" = "fd(i)
MEXT i

GOTO 8900

ELS

FRINT "alter which valoe? "}

INFUT 4

IF i1 OR dxrn THEN GOTO 4500
FRINT i

FRINT "courrent valoe = "31d(i)
FRINT "new value = '}

182 An Expert Guide to the Spectrum

4570 INFUT d(did
4580 FRINT cd(i)
4590 GOTO 8900

4600 CLS

44610 FRINT "delete starting from '3}

44620 INFUT 1

44630 FRINT 1

44640 PRINT "ending at "3

44650 INFUT h

445460 FPRINT h

4470 IF h<l THEM GOTO 4600

44680 IF hene OR bl OR 1xnc OR 11 THEN
COTO 4600

4490 FPRINT

4700 FRINT "delete from "313" to "ih

4710 FRINT "is this ak ?"}

4720 INFUT =%

4730 FRINT a4

4740 IF a$(1)<="w" THEN RETURN

750 FOR i=th+l TO n

4760 LET d(l+i-h-1)=d{i>

4770 NEXT i

4780 LET rm=n—-h+l-1

4790 RETURM

4800 CLS

4810 PRINT "how many extra valoues 23
4820 INFUT m

4830 FRINT ™

4840 DIM e(n)

4850 FRINT "making space’

4840 FOR i=1 TO n

4870 LET e(i)=d(i)

4880 MEXT i

4890 FRINT "mearly ready"

4900 DIM dlrtm)

4910 FOR i=1 TO n

4920 LET d(i)=e(i)

4930 MEXT i

4940 FRINT "vready"

49%0 DIM edl?

49460 FOR i=m+l TO rtm

4970 FRINT “data value "$ij" = '3}
4980 INFUT d(i?

Advanced Programming Applications 183

4990 FRINT d(i)
5000 MEXT i

G010 LET resritm
5020 GOTO 8900

5500 CLS

5910 FPRINT “ecalculating™
5520 COSLIE 2000

5530 GOTO 2500

4000 CLS

4010 FPRINT "how mandg bhins ? "3
6020 INFUT #m

4030 FRINT m

H040 FRINT "maminum value= "}
6050 INFUT

60460 FRINT h

G070 FRINT "mindimum values= "}
6080 INFUT 1

L0900 FRINT 1

H100 IF hewl THEN GOTO &000
6110 LET d=(h-1)/m

6120 COSUE 7000

H130 FOR i=1 TO m

H140 FRINT AT 21,03 TNT (Ix100>/1003 TRk &3
6150 XIF hdid)=0 THEMN GOTO 43190
6160 FOR =1 TO hii)/fxaes

&170 FRINT CHR$ 1433

H180 MEXT

6190 FRINT § FRINT

6200 LET I=1+d

62110 MNEXT i

6220 FRINT § FRINT

&Z230 CaTo 8900

7000 DIM hiim)

7010 FOR i=1 TO n

7020 LET j={d(id)=12/(th—1)Xm+]

7030 LET j=INT

7040 IF <1 OR jxm THEN GOTO 7040
7050 LET h(jy=h(j)+l

7060 MEXT i

7070 LET f=0

7080 FOR i=1 TO m

7090 IF f<nhdi) THEM LET f=h(i)

184 An Expert Guide to the Spectrum

7100 MNEXT i
7110 RETURN

8200 FRINT
8910 FRINT AT Z1,03"press any key to
continue!
8220 IF INKEY#$="" THEN GOTO 8910
8730 RETURN
This is the longest program in this book, and as such it contains

many techniques and ideas that only become important when
programs become large! In particular, notice the use of the menus to
allow users to select the action that they want, and the extensive
INPUT checking that attempts to stop invalid data getting into the
program and crashing it. The extensive use of subroutines should
make the program easier to understand, extend and maintain. The
following subroutine table should enable you to find your way
around:

line number description

500~ 690 main menu

1000-1270 generate random data
1500-1710 SAVE and LOAD data
2000-2140 calculate statistics
2500-2580 print results
3000-3120 data input

4000-4150 editing menu

4200-4330 list data

4500-4590 alter data

4600-4790 delete data
4800-5020 add data

5500-6230 plot histogram
7000-7110 construct frequency count
8900-8930 press any key to continue

The modifications to allow this program to work with data stored
on Microdrives are simple, if you do not want to take advantage of
the increased storage they offer. The direct way of changing the
program is to change the SAVE...DATA and LOAD.. DATA
statements into SAVE*.. . DATA and LOAD*...DATA statements.
Apart from this, the only other change would be to the form of the
filenames used. However, a better way of organising data on the

Advanced Programming Applications 185

Microdrives is to use PRINT files. Instead of storing all of the data
in an array, a PRINT file could be used, and only a single item of
data would be read in and processed at a time. This increases the
amount of data that can be processed to the capacity of the
Microdrive, rather than the amount of memory that is left over for
variable storage. The cost of this scheme is time. Each time the data
is required the entire file has to be read, and operations such as
appending new data are even more time-consuming.

Using Interface 2

Interface 2 is a very simple piece of hardware that allows standard
joysticks and ROM software cartridges to be used with the
Spectrum. The most important thing about Interface 2 as far as the
programmer is concerned is that it introduces a standard for the use
of the keyboard in dynamic games. The joysticks are connected as a
‘duplicate’ set of top row keys, thus:

Direction joystick 1 joystick 2
key key

Left 6 1

Right 7 2

Down 8 3

Up 9 4

Fire 10 5

Although these keys can be read using the standard INKEY$
function, there is an advantage in using IN 61438 to read joystick |
and IN 63486 to read joystick 2. The user-defined logic functions can
be used to test which keys are pressed. For example

G500 LET A=IN 61438

10 IF FNa(a,BIN 1)=0 THEN PRINT "fire";

920 IF FNal(a,BIN 10)=0 THEN FRINT "up';

S30 IF FNa(a,BIN 100)=0 THEN FRINT "down";
340 IF FNa(a,BIN 10002=0 THEN FRINT “"right"}
S30 IF FiNa(a,BIN 100002=0 THEN FRINT "left";
9460 PRINT

570 GOTO S00

186 An Expert Guide to the Spectrum

will PRINT the appropriate words when any key or group of keys is
pressed. Notice that this program has to be added to the definition of
the logic functions given earlier in this chapter.

Conclusion

There is no end to ways in which a knowledge of the inner workings
of the Spectrum can be put to good use. The most important advice |
can give concerning your own programming projects is to take them
seriously! It is all too easy to start a project without any clear
objectives, and give up when the going gets tough. If you start with
an accurate idea of what you want the software to do, and set the
specifications high enough, overcoming the difficulties is a satisfying
challenge. Don’t give up - try to isolate your problems and write
routines to investigate what is happening. A finished program that
does what you planned is a sufficient reward for any amount of
effort.

Appendix
Further Reading

There are a huge number of books and magazines published
concerning the Spectrum, and the range they present is bewildering.
If you are looking for some further reading, you might find the
following suggestions helpful.

If you are a self-taught BASIC programmer then The Spectrum
Programmer by S. M. Gee (Granada, 1982) will help you to clear up
any gaps in your knowledge. It starts at a fairly elementary level but
very quickly gets to the more interesting features of ZX BASIC,
graphics and sound. Even if you are an accomplished programmer
you will find something to learn from the early chapters about the
natural structure of a BASIC program.

A more advanced book about good programming style is my own
The Complete Programmer: A guide to better programming in
BASIC, (Granada, 1983). This is not a book about the Spectrum in
particular but about BASIC in general, and more sophisticated
programming techniques. In this sense it covers the machine-
independent side of advanced programming.

At a slightly lower level than this book, but with many examples
illustrating fundamental programming ideas, is The Art of
Programming the Spectrum by Mike James (Bernard Babani
Publishing, 1983).

The collection of games in The Spectrum Book of Games by Mike
James, S.M. Gee and Kay Ewbank (Granada, 1982) also illustrates
many of the techniques described in this book. In particular ‘Laser
Attack’ uses functional characters, and ‘Fruit Machine’ uses the
technique of internal animation described in Chapter 7.

If you are interested in developing Z80 assembly language
programming then my own favourite is The Z80 Microcomputer
Handbook by William Barden (Sams, 1978) but it does include a lot
of hardware information as well as software details. For an
introduction to Spectrum machine code see /ntroducing Spectrum

188 An Expert Guide to the Spectrum

Machine Code by lan Sinclair (Granada, 1982), and if you are
already a préficient assembly language programmer then The
Complete Spectrum ROM Disassembly by Dr lan Logan and Dr
Frank O’Hara (Melbourne House, 1983) is an essential companion.
It contains everything you could ever want to know about the 16K
ROM, but you often have to work quite hard to find it and
understand it!

Finally it is worth mentioning that if you are interested in the
more advanced software and hardware aspects of the Spectrum, and
computing in general, then Electronics and Computing Monthly
provides a welcome relief from the diet of games programs found in
some other magazines, and invariably has some stimulating
information relevant to Spectrum applications.

Iindex

adding commands, 173

address, 3, 6

ad hoc channels, 136

AND, 166

append, 121

assembly language, 138, 152, 160
ATTR, 81

attribute map, 79

BASIC format.46
baud rates, 147, 149
binary, 4

bit manipulation, 166
bit mapped, 75

bit pattern, 4
broadcasting, 157
buffering, 115, 156
bus, 6

byte arrays, 162

CAT, 114, 120, 123
channel record, 65, 132, 150, 159
channels, 58, 114
character definition, 90
character tables, 85
CLEAR #, 121
CLOSE, 60

CLS #, 121

control codes, 84
CPU, 2, 8

CTS, 144

data, 3

data block, 109, 129
data files, 117, 124
device independence, 62
display map, 78

DTR, 144

end of file, 122

ERASE, 114, 123
errors, 65
expansion connector, 23

file organisation, 130

file specifiers, 112

floating point, 44

FOR, 54

FORMAT, 114, 128, 149, 155
free characters, 92

functional characters, 89

GOSUB, 52
GOTO, 50

handshaking, 144, 156
header block, 102, 129

IN, 17

INKEYS #, 117
INPUTS #, 117
Interface 1, 111
Interface 2, 185
internal animation, 91

keyboard, 21
keyboard state variables, 34
keyword finder, 48

LIST, 64
LOAD routine, 103
LOAD*, 113

map lister, 136

memory, 9

memory management, 37, 45
memory map, 29

MERGE*, 103

Microdrive, 111

Microdrive channel, 132

190 /ndex

Microdrive data format, 128
Microdrive maps, 131, 136
Microdrive operation, 117
MOVE, 114, 120

network, 155

network protocol, 158
network service, 160

new character sets, 90
new system variables, 137
NOT, 166

ON...GOTO, 51
OPEN, 60

OR, 166

OUT, 17

paging, 127

parallel attributes, 75
passing parameters, 163
PEEK, 11

POINT, 80

POKE, 11

PRINT 4, 117

RAM, 3,9

RAM boundary variables, 33

random access, 141
record/ sector lister, 134
renumber, 49

rewind, 140

ROM, 3,9

ROM paging, 127
RS232, 143

SAVE routine, 103

SAVE*, 113

screen scrolling, 95
SCREENS, 80

sectors, 129

sound, 105

stack, 52

statistics program, 177
streams, 58, 63, 114
system state variables, 36
system variables, 29, 32

tape catalogue, 104
tape format, 100
tape system, 98

ULA, 13, 18, 99, 105
user-defined channels, 170
user-defined graphics, 86
user-difined sound, 107
USR functions, 163

variable dump, 42
variable size characters, 94
variables format, 40

VDU program, 153
VERIEY®, I3

video display, 12, 74

video driver, 82

video output, 15

video system variables, 87

white noise, 107

ZAP, 108
ZX Printer, 108

THE SINCLAIR SPECTRUM FOR CONNOISSEUR

The continued success of the Sinclair Spectrum has been
phenomenal. This book is a practical introduction to the
advanced features of the Spectrum covering both
hardware and software. It is aimed at the Spectrum user
who seeks a deeper understanding of the Spectrum and
its capabilities, starting with an inside view of the micro,
followed by a connoisseur’s guide to ZX BASIC and an
introduction to the machine operating system. The ZX
video is covered in detail and chapters are devoted to the
tape system, the RS232 interface, the microdrive and
advanced programming techniques. Complete program
listings and projects are provided throughout for readers
to explore the more sophisticated capabilities of the
machine.

The Author

Mike James is the author of several very successful books
on programming and has been a regular contributor to
Electronics and Computing Monthly and other popular
magazines.

Other books on the Spectrum

THE ZX SPECTRUM
and how to get the most from it

lan Sinclair
000 3830715

THE SPECTRUM BOOK OF GAMES
M. James, S. M. Gee and K. Ewbank
0 246 12047 9

THE SPECTRUM PROGRAMMER

SM Gee
0 246 12025 8

INTRODUCING SPECTRUM MACHINE CODE
lan Sinclair
0 246 12082 7

SPECTRUM GRAPHICS AND SOUND
Steve Money
000 383136 1

COLLINS

Printed in Great Britain

0003831345 £6.95 net

	Content
	Preface

	1 Becoming an Expert

	The parts of a computer

	Address, data and bit patterns
	Bit patterns in hardware - the bus

	2 Inside the Spectrum

	The CPU

	The Memory

	BASIC access to memory - PEEK and POKE

	The video display
	BASIC I/O - IN and OUT
	The Spectrum's built in I/O devices
	The ULA as an output device
	The ULA as an input device
	The expansion connector
	The system diagram

	3 Inside ZX BASIC

	The memory map

	System variables
	Using the RAM boundary variables
	The keyboard state variables
	The system state variables
	The shifting memory

	Conclusion

	4 The Structure of ZX BASIC

	The format of variables - a variable dump program
	The numeric data formats
	The dynamic management of variables
	How ZX BASIC is stored
	A keyword finder
	A line number program
	GOTO
	GOSUB and the stack
	The FOR loop
	Conclusion

	5 I/O - Channels and Streams

	Streams - INPUT# and PRINT#
	Channels - OPEN and CLOSE
	The use of streams - device independence
	The default streams
	Other stream commands
	Channels and streams - memory formats
	Creating your own channels
	Conclusion

	6 The Video Display

	Black and white to colour
	The video memory
	The display file map
	The attribute map
	PEEKing the display file - POINT and SCREEN$
	Attribute codes and ATTR
	The video driver
	The character tables
	The video system variables
	Creative video

	7 Video Applications

	Functional characters
	Changing the character set
	Internal animation
	Free characters
	Variable size characters
	Smooth screen scrolling
	Conclusion

	8 Tape, Sound and the Printer

	The tape system
	Tape hardware
	Tape format
	The SAVE and LOAD routines
	Sound
	The ZX Printer

	9 Interface 1 and the Microdrives
	ZX Microdrive BASIC - file specifiers
	The extensions to the tape commands
	The new Microdrive commands
	The channel and stream commands
	Reading and writing a file - buffering
	Using PRINT#, INPUT# and INKEY$#
	Advance CAT
	Advanced MOVEing - renaming and appending
	CLEAR# and CLS#

	The end-of-file problem
	A prompting ERASE program
	Date file handling - an example
	Putting the Microdrives to work

	10 Principles of Interface 1 and the Microdrives
	The ROM paging
	The Microdrive data format
	The sector map
	The Microdrive maps
	The Microdrive channel
	Summary
	A record / sector lister
	Looking at the map
	Ad hoc channels and non-PRINT files
	The new system variables
	Using assembly language
	A rewind command
	Random access files
	The continuing saga of Interface 1

	11 Interface 1 and Communications
	RS232 - almost a standsrd
	The Spectrum's RS232 interface
	Handshaking and no handshaking
	RS232 data format
	The BASIC RS232 commands
	Setting the baud rate
	Using both t and b
	Principles of RS232 operation
	Assember and the RS232 interface
	A Specrum VDU
	The Sinclair Network
	The BASIC net commands
	Station 0 and broadcasting
	Principles of operation
	The network channel descriptor
	The net from assembler
	Service Spectrums

	12 Advanced Programming Applications
	Byte arrays
	Passing parameters to USR functions
	Bit manipulation - AND, OR and NOT
	User-defined channels and Interface 1
	Adding commands to ZX BASIC
	A stats program
	Using Interface 2
	Conclusion

	Appendix: Further Reading
	Index

