
I-
D
O
cc

40 Best Machine Code Routines for the

ZX Spectrum
This book teaches the beginner by example in a simple, easy-to-learn
form and it is an invaluable reference work for the expert too!

Section A:
Three chapters explaining what you need to know about Z80
Machine Code on the Spectrum—how memory is organised, the
registers, the stack, the display.
Section B:	 down, side to side by pixel or40 Routines including, Scroll-up,
by character.
Search and Replace, token swap, string search. Rotate character,
invert character—horizontally and vertically. Line Renumber—
including GOSUBs, and GOTOs, RUN etc. plus many more.

EXPLANATORY TEXT
ato

^ 	 add a,64

1a c'a

, Z	 1a

^54 ^^^^
. de ,h1 ,!1
	 208

a, (2319	 42 0 91
P 116

c et c^	 ^
40 BESTc	 1^

1d h^ , (1329"
0̂0

1
OT C	 ^
T et Z,	 ^^ n ^ 	 n ^^^ n ^^
ele, bH^tODERO"U I INES
i^c	 19^
cP 48 ^ot PtOt	 213	 for the

	

push be	

ZX6S11 PECTRUMPa a eal 5

	

sub h	 ^ z

1a \,a
0 a,e

aaa a'b
sub d

1a åa0	
213

Ush h1	 225
P'141 de	 41

ååå
\-`1
 \I\ 'hi
	 41

a
aaa h1 h1	 41

1

	

a ån1^ J 0 H N HARDIV.154N	 taaNDREW HEWON
12 p°^ h1 ,ae	 3 ^

NETT
PRICE
£5.95

95
22 0
229

40 Best Machine Code Routines

for the

ZX Spectrum

John Hardman

and

Andrew Hewson

i

First Edition 1982
Copyright © Hewson Consultants 1982

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical
including photocopying, recording, or any information storage and retrieval
system without permission in writing from the publisher.

The programs and routines in this volume are the copyright of the publisher
and are for the personal and private use of the purchaser only.

ZX Spectrum is a registered trademark of Sinclair Research Ltd,
Cambridge, UK.

The contents of the ZX Spectrum 16K ROM are the copyright property of
Sinclair Research Ltd.

Acknowledgments

To my family for their patience but especially to Debbie, John and Mairi
for their unending encouragement.

J.H.

With thanks to Janet, Gordon and Louise.

A.D.H.

ISBN 0-907912-03-6

Printed and bound in Great Britain for Hewson Consultants, 60A St. Mary's
St, Wallingford, Oxon, by Powage Press, Aspley Guise, Milton Keynes.

ii

CONTENTS

Section A
Page

1. Introduction 	 	 3
Why Use Machine Code 	 5
How to Learn Machine Code 	 6

2. Internal Structure of the ZX Spectrum 	 	 7
The Memory Map 	 7
PEEK and POKE 	 8
Display File 	 	 10
Attributes 	 	 11
Printer Buffer 	 12
Basic Program Area 	 12
Five Byte Numeric Form 	 13
Variables Area 	 13
ROM Routines 	 14

3. Z80A Machine Language 	 18

Bits 	 	 18
Bytes 	 19
Addresses 	 20
Z80A Registers 	 20
Accumulator 	 21
Flag Register 	 21
Counting Registers 	 22
Address Registers 	 23
Index Registers 	 23
Stack Pointer 	 24
Program Counter 	 24
Exchange Registers 	 25
About the Instruction Set 	 25
Glossary of Machine Code Instructions 	 26
No Operation 	 26
Load 	 26
Push and Pop 	 27
Exchange 	 27
8 Bit Add and Subtract 	 27
8 Bit and Or and Xor 	 27
Compare 	 28
8 Bit Increment and Decrement 	 28
16 Bit Increment and Decrement 	 28
16 Bit Add and Subtract 	 28
Jump Call and Return 	 28
Bit Instructions 	 29
Rotate Left Digit 	 29
Rotate Right Digit 	 29
Accumulation Operations 	 29
Restart 	 30
Block Handling 	 30

v
iv

CONTENTS (continued)

Section B

4. Introduction 	 33
Machine Code Loader 	 34

5. Scroll Routines 	 39
Scroll Attributes Left 	 39
Scroll Attributes Right 	 40
Scroll Attributes Up 	 41
Scroll Attributes Down 	 42
Left Scroll by One Character 	 44
Right Scroll by One Character 	 45
Up Scroll by One Character 	 46
Down Scroll by One Character 	 48
Left Scroll by One Pixel 	 50
Right Scroll by One Pixel 	 51
Up Scroll by One Pixel 	 52
Down Scroll by One Pixel 	 54

6. Display Routines 	 57
Merge Pictures 	 57
Screen Invert 	 58
Invert Character Vertically 	 59
Invert Character Horizontally 	 60
Rotate Character Clockwise 	 61
Attribute Change 	 64
Attribute Swap 	 65
Region Filling 	 66
Shape Tables 	 73
Screen Magnify and Copy 	 77

7. Routines to Manipulate Programs 	 85
Delete Block of Program 	 85
Token Swap 	 86
Rem Kill 	 88
Rem Create 	 91
Compact Program 	 94
Load Machine Code into Data Statements 	 96
Convert Lowercase to Upper Case 	 101

8. Toolkit Routines 	 103
Renumber 	 103
Memory Left 	 I 1 I
Program Length 	 112
Line Address 	 113
Copy Memory 	 114
Zero all Variables 	 116
List Variables 	 119
Search and List 	 122
Search and Replace 	 126
ROM Search 	 129
Instr$ 	 131

Appendix A 	 137

Section A

1vi

1. INTRODUCTION

The aim of this volume is to provide both the beginner and the experienced
computer user with a ready source of reference on a number of useful,
interesting or entertaining machine code routines for the ZX Spectrum. To
this end the book is divided into two sections. The Section A describes the
features of the Spectrum which are of interest to the machine code
programmer—what is meant by a machine code routine, the important
internal features and routines of the Spectrum and the structure of the
machine language itself.

The Section B presents the routines themselves. They are laid out in a
standard format which is explained in detail at the beginning of the section.
The routines are complete in themselves so that they can be loaded
individually without reference to any other routines.

It is not necessary to understand how a routine works in order to use it
because each routine can be loaded using the simple M/C Loader listed
at the beginning of Section B. Hence if you are really impatient to use, say
the List Variables routine simply turn to the relevant page, enter and RUN the
M/C Loader and enter the decimal numbers listed in the column headed
"Numbers to be entered". When all the numbers are loaded compare the
value of the Check sum PRINTed by the M/C Loader with the value given
with the routine. If they are the same you can be sure that the numbers
have been entered correctly (unless you have made two or more errors which
cancel out exactly). The routine is now ready for you to use.

If you have not got enough confidence to try a long routine like List
Variables but are still keen to get started on machine code as soon as
possible then choose a shorter routine. That way if you get lost or make too
many mistakes you will not have spent so much time doing so. The routine
to Scroll Attributes Down is ideal. Once again it is simply a question of
entering and RUNning the M/C Loader listed at the beginning of Section B
and copying the numbers given in the column headed "Numbers to be
entered". When you have finished make sure that the Check sum is correct.

If you are happy to defer use of the machine code routines then read
on. The remainder of this chapter introduces the basic ideas and goes on to
explain in more detail the layout of the remainder of the book. The
beginner is advised to read this information carefully but the more
experienced user will only require to skim through it.
The Z80A microprocessor which drives the ZX Spectrum does not directly
understand Basic words like PRINT, IF, TAB etc. Instead it obeys a special
language of its own called machine code. The instructions in the Sinclair
ROM which give the Spectrum its "personality" are written in this special
language and they consist of a large number of routines for entering, listing,
interpreting and executing the particular dialect of Basic which the
Spectrum uses. In effect, the routines are groups of "WHAT TO DO IF"
instructions. For example they tell the Z80A WHAT TO DO IF the next Basic
command is the word PRINT, and then WHAT TO DO IF the next item is a
variable name; and THEN WHAT TO DO IF the next item is a comma etc, etc.

2 3

Machine code consists of a sequence of positive whole numbers, each
less than 256, and it dictates the action of the Z80A by setting eight switches
according to the pattern of the binary equivalent of the number. The binary
equivalent of 237 for example, is 11101101 so that when 237 is encountered
the eight switches are set to on, on, on, off, on, on, off, on respectively.

Just because the machine obeys the binary version of the number there
is no need for humans to consider the instruction in this form. We are used
to using decimals and so it is this form that the M/C Loader in Section B
recognises. However, even a string of decimal numbers is difficult to
interpret and so the decimals are usually converted yet again to a special
assembly language which is a bit cryptic but not too difficult to use with
practice. Each routine in Section B is listed both in assembly language and
in decimal numbers.

Assembly language is so-called because a special program called an
assembler can be conveniently used to bring together or assemble many
machine code instructions to form a new program. Assemblers are
sophisticated programs because machine code is very extensive and they are
usually written in machine code themselves. Several such assemblers are
now available for the Spectrum and, whilst the routines in this book could
be loaded using an assembler, it should be emphasised that the M/C Loader
is quite adequate for the purpose.

One number only is required to specify the simpler Z80A instructions.
The instruction to copy the contents of register c to register d is decimal 81
for example. (The meaning of the word register is explained in more detail
in chapter 3. For the moment it is sufficient to think of c and d as akin to
Basic variables). For these instructions there is a one-to-one correspondence
between the decimal number and the assembly language version so that
decimal 81, for example, is written in assembly language as Id d, c. "Id",
by the way, stands for "load". Many assembly language instructions
consist of similar simple abbreviations and for this reason they are often
called mnemonics.

More complex instructions require two, three or even four numbers
before they are completely specified in which case a single assembler mnemonic
is used to represent them all. Table 1.1 lists a few examples of the numbers,
their mnemonics and a brief explantation.

Comment

Load d with the contents of c
Put the number 27 into c
Put the number 13 into c
Put 13339 into the hl register
pair. Note 27 + 256*52 =
13339; 27 is put into I; 52 is
put into h

521d ix, 13339	 Put 13339 into the ix
register pair

Table 1.1 Some examples of machine code instructions for the Z80A

4

Line (a) of the table is the example of Id d, c discussed above. Lines
(b) and (c) show how a positive whole number less than 255 may be loaded
into a register using two successive numbers—the first specifies the action
to be performed and the second specifies the number to be loaded. Line (d)
shows how a large whole number may be loaded into two registers, h and I,
together. This time it is the second and third numbers which specify the
number to be loaded. The final example in line (e) illustrates a four number
code for loading a large whole number into the ix register pair. Notice how
three out of the four numbers also appear in line (d). In effect the first
number specifies the ix instead of the hl pair.

The structure of machine language is explained in more detail in chapter
3 and a full list of the assembler mnemonics is given in appendix A. A more
important question which should be answered at this point is:

Why use Machine Code?

With any programming language on any computer it always seems to be
the case that there are tasks which the user wishes the machine to perform
which cannot be conveniently written in the language available or which
when written in that language, are very slow to execute. The ZX Spectrum
is no exception in this regard.

Consider for example the problem of saving the entire screen display at
the top of RAM or copying it back again perhaps with the intention of
creating a cartoon effect by "flipping" between various displays. The
display file and the attributes together occupy 6912 bytes and so it is
necessary to move RAMTOP down to 32768 – 6912 = 25856 on the 16K
machine to provide enough space for the copy of the display outside the
Basic area (65536 – 6912 = 58624 on the 48K machine). The following
simple Basic program will save the screen display but it takes a long time—
about 70 seconds:

10 FOR i= Oto6911
20 POKE 25856+i, PEEK (16384+i)
30 NEXT i

The reason it takes so long is that the Spectrum spends most of its time
decoding the commands before executing them. A certain amount of time
is also spent converting numbers between the two byte integer form which
the Z80A understands and the five byte decimal form in which the loop
counter is held and also in performing five byte arithmetic. The steps are as
follows:
1) Add i to 16384.
2) Convert the result to two byte form.
3) Retrieve the contents of the PEEK address.
4) Add i to 25856.
5) Convert the result to two byte form.
6) Store the value retrieved in the POKE address.

5

Ref Decimal

(a) 81
(b) 14 27

(c) 14	 13
(d) 33 27 52

(e) 221 33 27

Assembly language

Id d,c)
Id c,
ld c,.13
ld hl, 13339

7) Add one to the value of i and store the result.
8) Subtract i from 6911. If the result is positive or zero go to 1).

Each time a pass is made through the loop the Spectrum must decode
each command afresh because it retains no memory of the previous
operations. It is easy to see that the computer spends over 99 0'o of the time
preparing to perform the task rather than performing the task itself.
Therefore it is no surprise to know that a machine code routine to save the
screen executes more or less instantaneously. An example routine is given in
Section B.

How to Learn Machine Code
The machine language of the Z80A microprocessor is very complex and to
understand all its facilities requires a good reference book, a lot of thought
and much practice. There are several books available. The standard
reference is How to Program the Z80 by Rodney Zaks, published by Sybex
and available through Radio Shack (ie Tandy Stores), ISBN No.
0-89588-057-1. It contains a great deal of information about the hardware
organisation of the microprocessor as well as listing full details of the
instruction set. The beginner might find it rather formidable because it runs
to more than 600 pages.

A rather more readable account is contained in Z80 and 8080 Assembly
Language Programming by Kathe Spracklen, published by Hayden, ISBN
No. 0-8104-5167-0. The book starts at a more elementary level and covers
the more important software aspects and ignores the hardware almost
entirely.

This book is intended to act not only as an introduction to machine
code for the beginner but also to be useful to the more experienced user. It
gives the reader a strong incentive to learn machine code by providing him
with routines which he can incorporate into his own Basic or machine
code programs, with or without adaption.

Most of the routines depend intimately on the structure of the ZX
Spectrum and so the next chapter covers the topic in some detail. It covers,
for instance, the form of the display file, the program area and the
variables area, explains the layout of Basic program lines and introduces
five byte floating point arithmetic. The reader of Section B is assumed to
be familiar with the contents of this chapter.

The third chapter explains Z80 machine language in some detail,
describing many items which are assumed later on. It contains a glossary of
the instruction set which covers most of the salient facts without reproducing
the detailed coverage given in Zaks' book.

6

2. INTERNAL STRUCTURE OF THE ZX SPECTRUM

A computer is a machine which is capable of storing a sequence of
instructions and then executing them. Clearly to do so it requires a memory
in which the instructions can be stored. The ZX Spectrum contains two
distinct types of memory. The first type is read-only-memory (ROM) which
contains the fixed set of instructions implanted in the machine by the
manufacturer. The second type is random-access-memory (RAM).

Random-access-memory is the notepad of the Spectrum. When the
computer is performing a task it is continually looking at what is in RAM
("reading" from memory) and altering the contents of RAM ("writing"
to memory). The Spectrum does not use its notepad haphazardly.
Different parts of RAM are used to store different sorts of information. A
Basic program entered by the user for example, is stored in one part of
RAM, whilst the variables used by the program are stored elsewhere.
The size of the notepad is limited and so the machine is careful to
allocate just enough space and no more to the information that it holds.
Thus the spare space is always collected in one place so that if, for example,
the user wants to add a line to his program the information in RAM can be
shuffled along using up some of the spare space to accommodate the extra
line.

Most of this chapter is devoted to explaining in detail how the Spectrum
organises RAM because many of the routines in Section B are designed to
manipulate RAM. Therefore if the reader is to understand the design of the
routines as opposed to using them blindly, he must understand the contents
of this chapter. The chapter covers the display file, the attributes, the
printer buffer, the system variables, the program area and the variables
area. The final section describes the routines in ROM which are referred to
in Section B.

The Memory Map

There are 16384 memory locations in RAM in the unexpanded ZX Spectrum
(the expanded version contains a further 32768 locations making 49152 in
all). Each location can hold a single whole number between 0 and 255
inclusive and is identified by its address which is a positive whole number.

Addresses 0 to 16383 are assigned to the fixed form of memory, the
ROM, and so the first address assigned to RAM is 16384. Table 2.1 is the
memory map of the Spectrum which shows how RAM is used starting
at address 16384. The display file, for example, which holds the information
which is currently shown on the screen, occupies locations 16384 to 22527.
The attributes, which determine the colour, brightness etc of the screen
display, follow immediately afterwards in locations 22528 to 23295.

The first five starting addresses in column 1 of table 2.1 are all fixed
because the display file, the attributes etc all occupy a fixed amount of
space. The fifth area is assigned to the microdrive maps. If a microdrive
is attached to the Spectrum this area contains information on the layout

7

WORKSP	 23649
STKBOT	 23651
STKEND	 23653
sp

RAMTOP	 23730
UDG	 23675
P— AMT	 23732

of the data in the microdrive. If a microdrive is not attached, the area
is not needed in which case the sixth area, channel information, is placed
immediately after the fourth, the system variables, in line with the Spectrum
practice of saving space wherever possible. Hence the starting address of the
channel information area and all subsequent areas is not fixed but can
"float" up and down RAM.

The Spectrum keeps track of the starting address of all these areas by
storing the current value of each address within the system variables
area. The system variables area lies before the microdrive map at locations
23552 to 23733 inclusive and so there is no question of this area also moving
up and down RAM! The address within the area which holds the starting
address of all the floating areas is listed in column two of table 2.1. The
address of the Basic program area, for example, is held at 23635 within the
system variables area.

Starting address
	

Location of	 Memory contents

or system variable
	 system variable

name

16384	 —	 Display file
22528
	

Attributes
23296
	

Printer buffer
23552
	

System variables
23734
	

Microdrive map
CHANS	 23631

	
Channel Information

PROG	 23635
	

Basic program
VARS	 23627

	
Variables

ELINE

	

	 23641
	

Command/line being
editted
Data being INPUT
Calculator stack
Spare
Machine stack and GOSUB
stack
User machine code routines
User defined graphics
End of RAM

Table 2.1 The memory map. The stack pointer, sp is held not in RAM but in the
sp register in the Z80A microprocessor.

Referring to each system variable by the address at which it is held is
rather awkward and so each is given a name—PROG in the case of the
location which holds the address of the Basic program area. These names
are for the users convenience only as they are not recognised by the
Spectrum. Thus entering the line:

PRINT PROG
will cause the error message "2 Variable not found" to be PRINTed unless
a Basic variable called PROG has been generated coincidentally by a

8

program or by the user. The value of such a Basic variable would have
nothing to do with the value of the PROG system variable.

PEEK and POKE

The memory map is the key to understanding the use of RAM by the
Spectrum but the keys to exploring the RAM are the Basic keywords,
PEEK and POKE, which allow the user to look at and alter respectively,
the contents of each memory location.

PEEK is a function of the form:
PEEK address

The address can be a positive whole number between 0 and 65535
or an arithmetic expression which when evaluated gives such a positive
number. It is important to enclose an arithmetic expression in brackets
because:

PEEK 16384 + 2
is interpreted as 2 added to the result of:

PEEK 16384
whereas:

PEEK (16384 + 2)
is interpreted as:

PEEK (16386)

The value returned by the PEEK function is the number currently held
at the address in question which will always be a positive whole number
between 0 and 255 inclusive. It was explained above that the PROG
system variable is held at address 23635 but the value of PROG, being an
address in RAM, is always much larger than 255 therefore two adjacent
addresses, 23635 and 23636, are needed to hold it. The value of PROG can
be PRINTed by entering:

PRINT "PROG = "; PEEK 23635 + 256* PEEK 23636

All addresses are held in two adjacent locations in this fashion and can
be inspected by entering:

PRINT PEEK first address + 256* PEEK subsequent address

For example if a Spectrum is used without a microdrive attached the
microdrive map area will be non-existent and the channel information will
follow immediately after the system variables area. Thus the value of the
CHANS system variable will be the same as the starting address of the
microdrive map, were it to exist, ie 23734. CHANS is held at 23631 and
23632 and so entering:

PRINT PEEK 23631 + 256* PEEK 23632
will yield the value 23734.

The PEEK function can be used to look at the contents of any location
in memory including the fixed instructions in ROM. It is therefore

9

a very important tool. PEEKing any location will not cause the Spectrum to
crash or corrupt a program or variables. Very occasionally the results
of a PEEK can be misleading because the contents of the location being
PEEKed may alter during or immediately after the execution of the
instruction. For example, if the contents of the locations which are assigned
to the top left hand corner of the screen display are PEEKed and the
results PRINTed in the top lefthand corner of the screen the information
will already be out-of-date by the time the user views it.

The POKE command is altogether more dangerous than the PEEK
function because by invoking it the user is interfering in the functioning
of the Spectrum. Thus it is quite possible to make nonsense of the
information in RAM using this command causing the machine to crash or
to halt and display an error code.

The form of the command is:
POKE address, number

Once again the address is a positive whole number between 0 and 65535
inclusive or an arithmetic expression which gives such a number when
evaluated. In this case it is not essential to enclose an arithmetic expression
in brackets because POKE is a command not a function and therefore
cannot be evaluated as a whole. The number POKEd into the location
must lie between 0 and 255 inclusive.

The Spectrum will accept and execute a POKE command to put a
number into an address in ROM (ie an address between 0 and 16383) but the
number will never reach its destination. This fact can be demonstrated
by RUNning the following program:

10 PRINT PEEK 0
20 POKE 0,92
30 PRINT PEEK 0

Lines 10 and 30 will each PRINT the value 243 which happens to be
the contents of location 0. Line 20 has no effect.

The Display File

The normal display consists of 24 lines each containing 32 characters. We
have seen that the display file occupies locations 16384 to 22527 ie 6144
locations in total, therefore the number of locations used per character is:

6144/(24*32) = 8
The easiest way to get an overall impression of how the display is

organised is PRINT a picture on the screen, SAVE the screen to tape,
clear the screen and LOAD the picture back again. The program P2.1
SAVEs and LOADs the screen in this manner using graphics character 5 to
create the original picture.

When the picture is reLOADed from tape it becomes clear that the
display is divided into three sections of eight character lines each. Each

10

100 E O R i =S?t TO 703
:Lao PRINT -1-;
120 NEXT i
130 SLUE "Picture-SCREENS

D CES
ïSic INPUT -Rewind t he cassette,

it and then press a keU "_

_e o LORD "Pi c t U i e "SCREEN$
Program P2.1. A program to SAVE, clear and LOAD the screen.

character line is further divided into eight lines of pixels. Surprisingly,
the Spectrum does not LOAD, the eight pixel lines which form the first
character line followed by the eight pixel lines which form the second
character line etc. Instead it LOADs the top pixel lines of the first eight
character lines, followed by the next pixel lines of the same eight character
lines and so on. The top section of the display, consisting of eight character
lines and the final eight character lines, form the middle and the bottom of
the display respectively.

Another way of understanding the form of the display is to consider
where the eight bytes which are used to form the character at the top left hand
corner of the screen are held. The first byte forms the topmost eighth of the
character and is located at the beginning of display file at address 16384. A
few moments experimentation shows that:

POKE 16384,0
blanks out the top line of eight pixels which form the top of the first
character whereas:

POKE 16384, 255
causes all the pixels to be illuminated. POKEing numbers between 0 and 255
causes a speckled effect.

The line of eight pixels which is second from top in the first character
on the screen is not formed from the number held at location 16385,
rather this location is used for the top line of pixels in the adjacent character.
There are 32 characters in a line and 8 in a section so that the second
from top line of eight pixels in the first character is formed from the
number held at location:

16384+ 32*8 = 16640
A similar argument applies to the remaining six lines of eight pixels

therefore the form of the character at the top left hand corner of the screen
is dictated by the contents of addresses:

16384, 16640, 16896, 17152, 17408, 17664, 17920, 18176
Program P2.2 allows the user to experiment by POKEing various

numbers into these eight locations.
Every location in the display file controls the condition of eight pixels

on the screen. This control is exerted by converting the number which is
held at a given location to its binary form and then setting the eight pixels

11

10 Rr.f-i Routine to set characte
at top LH5 Of screen"
20 INPUT "!3 character i.s forme

d rrora eight bytes, each Lying }
etween s<^ and255 inclusive. Enter
number of	 byte 10 to f's "l n
30 IF n;17t OR n? 7 OR n1 1NT n?'

ME W BEEP .2,24-: GO Tr', 20
40 INP UT "Enter contents- o i hy

5 E	
..	

..}
50 IF li! 10 OR IQ y 255 OR m i % IlVT m

T`-` M `',t REEP :2;24•: GO TO 40
50 POKE 16354-4-5*32 fn ,m

Program P2.2. A program to construct the character at the top left hand corner of
the screen.

according to the zero/one pattern of the eight binary digits. For example,
240 when converted to binary is:

11110000

Therefore if a location contains the number 240, four of the eight
corresponding pixels will be illuminated and the remaining four will be
blank.

To summarise, the display file consists of 6144 locations with eight
locations assigned to each character position. Each location dictates the
condition of a horizontal bar of eight pixels. The locations assigned to a
given character position do not occur adjacent to one another, instead
the display is divided into eight sections and within each section 256
locations separate the constituent bytes of each position.

The Attributes
The contents of the display file determine only which pixels are illuminated
on the screen. The colour of the PAPER and INK and the BRIGHT and
FLASH conditions are determined by the attributes. The attributes area
occupies locations 22528 to 23295 with one location being assigned to each
of the 768 character positions. In contrast to the display file the locations are
assigned to the character positions in the obvious fashion, ie starting at
the top left hand corner and working from left to right and top to bottom.

Each location sets both the INK and PAPER of the position to which
it is assigned to one of the eight colours shown above the top line of keys on the
Spectrum keyboard. It also determines whether the position is BRIGHT and
whether it FLASHes. The four parameters are encoded using the following
calculation:

Attribute value = 128*FLASH + 64*BRIGHT + 8*PAPER + INK

FLASH and BRIGHT take the value one if the appropriate condition
applies and zero otherwise and PAPER and INK take the value of the
required colour as shown on the keyboard (red is 2 for example). Program
P2.3 decodes the attribute, ie given an attribute value it PRINTs the
corresponding PAPER and INK colours etc.

12

„ 3 ra Z
=-3	

„ "Plagen t a" "Green , ..jY.

^	 "	 •i'eLtoli;","Wh.FtE	 ","Bright
c _ F <

30	 c$. f 8, 7)
4-0 F OR s =1 Tf? 5
50 READ c $ f i ?
50 NEXT i

100 REM Rtrribute de coder
110 INPUT "En ter a number be t t!+e

er? 3c^3 and 255This program decodes-
i ts inter– pretation in the att

._ b y tes fi 1_ e „ n
120 SF n ï0 OR n?255 OR n c?INT n
THEN BEEP .=2;24: GO TO 110
;11 ;<^0 PRINT . 'In .'+, colour ;_ "; c$ t1
n –5?tINT in.^ 5? .l

– t132+ PRINT "Paper co lour i_ "; r^
i1+INT fn. 5? –S*INT fr3,'S4_? t
--=0 IF Ih-!T 1n/54) = 1 OR INT in/ 5

4-ï=3 THEN PRINT "Character is BR
_ z--1HT>,
230 IF n?1.27 THEN PRINT "Charar

'^ r at i l t F LRSH"
3ci0 PRINT RT 6 0 - •'is$mmititt

mmssit,>im3iliiii#i - —
K ^10 FOR 3 =22 7}23c^ TO G= 7= i
7; _' 0 POKE 1 , n
30 NEXT i
500 INPUT "Hit ENTER to repeat

F. '=0 L•L»
520 GO TO 1 10

Program P2.3. A program to decode an attribute.

The Printer Buffer

The 256 locations in RAM following the attributes area are used to hold
temporarily an incomplete line of characters which are later to be trans-
ferred to the printer. The buffer is necessary because a Basic program can
LPRINT a part of a line terminated by a semi colon or comma to indicate
that the remainder of the line is still to come. In some circumstances the
TAB command can act in a similar manner. The part line cannot be passed
to the printer immediately because the printer can only output a complete
line, winding the paper forward to prepare for the next line as it does so.
Therefore, the part line is stored temporarily in the printer buffer until the
program LPRINTs the other part.

Many of the routines in Section B make use of the printer buffer to
pass data from Basic or the keyboard to the routines. The buffer is
convenient for this purpose because its location is fixed and the user is
unlikely to wish to use it for any other purpose when calling a machine code
routine.

13

10 REM Ptrril,ute decoder
20 DATA "g lacR ","Blue

0
?0
14
^
234
30
101
101
107
:-2

:.3
224
111
103
114
97
109
13

Basic Program Area

If a microdrive is attached to the Spectrum the beginning of the Basic
program area must be determined by referring to the PROG system
variable which is located at 23635. In the absence of a microdrive the area
starts at 23755. In these comments it is assumed that a microdrive is not
attached.

The four line program P2.4 PRINTs the contents of the 18 locations
at the beginning of the program area as shown in figure F2.1. These 18
locations are used to hold the first line ie:

10 REM Peek program
Much can be learnt about the method of encoding programs by

studying figure F2.1.

1 0 RED Peel; PrC9r8rf5
`̂ . FrtR=23755 TO3772
30 PR.IN? i ; PE EX
.1-0 NEXT i

Program P2.4. A program to PRINT the contents of the first eighteen locations
in the program area.

23755
23756
=3?5^
23758
23759
?37â0
23752
23763
23754.
23755
L.3 ^5^
23755
2 "~ 5 Sr
23770
23772.
23. 72

Figure F2.1. The form in which the line:
10 REM Peek program

is held in the program area.

The line number, 10, is stored in the first two locations in the form:
line number = 256*PEEK first address + PEEK second address

Notice that the Z80A convention of multiplying the contents of the
second address by 256 and adding it to the contents of the first is not
applied.

14

The convention is applied to the next two locations, 23757 and 23758
which together hold the length of the remainder of the line starting at
location 23759. The number stored in this case is:

14+256*0= 14
Hence the next line starts at location:

23759 + 14 = 23773
Location 23759 itself holds the number 234 which is the character code of
REM. The next 12 locations hold the character codes of the eleven letters
and a space in the title:

Peek program
Finally location 23772 contains 13 which is the code for the ENTER

character indicating that this is the end of the line. Table 2.2. summarises
the method of encoding programs in the program area.

Locations	 Contents

1 and 2	 line number stored in the reverse order to the Z80A
convention

3 and 4	 length of the line excluding the first four locations.
5	 the command code.
Final	 the ENTER character, number 13.

Table 2.2. The method used to encode program lines.

An item which is omitted from the table is a description of the method
which is used to store values occurring in the program. The method can
be explored by substituting the line:

10 LET a= 1443
in program P2.4 Figure 2.2 shows the result of RUNning the program in
this form.

23755 0
23756 10

1 ^-
0

23759 241
23750 o,
23751 51– ?52 4 9
23753 5?
23754- 52
23755 5 1
23755 14.

^. 0
23756
2_^755 15:3
23770 5
23771 0
2:3-7? 1.3

Figure 2.2. The form in which the line:
10LETa= 1443

is held in the program area.

15

Locations 23755 to 23758 are as before. They are followed by the
codes for LET,a, = and the four digits in turn which together form the
number 1443. The next item in location 23766 is 14, the character code which
indicates that the subsequent five locations hold the number 1443 in
numerical form. The line is terminated at location 23772 by the ENTER
character as before.

Five Byte Numeric Form

Five memory locations are used to store each number which appears in a
Basic Program (except line numbers as we have already seen). Whole
numbers between — 65535 and 65535 are stored in a manner akin to the
Z80A convention. For these numbers the first two locations and the last
each contain zero and the third and fourth hold the number in the form:

number = PEEK third location + 256*PEEK fourth location

Thus, for example, 16553 is held in five locations as:
00 169 64 0

because
169+256*64= 16553

Non-integer numbers are held in floating point form as a exponent in
the first location and a mantissa in the following four ie:

number = mantissa * 2 T exponent
The first location of the mantissa is also used to determine the sign of

the number. If the location contains a value in the 0 to 127 range the
number is positive, if not it is negative.

Program P2.5 can be used to reconstruct a non-integer number from its
five component values.

10 PRINT -Enter the exr, ,Dr';er:t a
^à the f our to-ries o f t h e N;anti_

^
-

raEL entries to tie .:!tt..Cart Q
a,^à 255 ir? LiSsiüa"

INPUT e .a ., c .ô
PRINT	 '..1=x^•o ne:^ t = ., . e

4.0 PR Ir3T :. ^ta ! t i = s a = .. a . , h r : c

5:1 PRINT	 "The nuFf:be r =	 é2t
ç3 î 125) —1) *21` t o -1E0)	 +1
as* to <126) 3 th) *255+c) *2EEtd)

Program P2.5. This program reconstructs a non-integer number from its five
component values.

The Variables Area

The variables area starts at the location held in the VARS system variable
which is itself held at 23627. Whenever a new variable is declared either
in a program or from the keyboard an appropriate amount of space is
created for it in this area.

16

All variable names must begin with a letter and no distinction is made
between upper and lower case. These restrictions enable the Spectrum to
manipulate the character code of the leading letter of each variable so that
it can distinguish the six permitted types of variable by inspecting the
range within which the code lies. All numeric variables with single character
names, for example, have codes in the range 97 to 122; the letter a being 97;
b being 98; c being 99 etc. Similarly, numeric arrays have codes in the
range 129 to 153; a being 129; b being 130; c being 131 etc. The code
ranges are summarised in table 2.3. The length of each type of variable is
also shown in table 2.3.

Variable type	 Character code range
	

Length in variables area

Numeric (single	 97 to 122	 6
character name)
Numeric (multiple 161 to 186

	
5 + name length

character name)
Numeric array	 129 to 154

	
4 + 2* number of dimensions +
5* total number of elements
18

3 + string length
4 + 2* number of dimensions +
total number of elements

Table 2.3. Variables, the range of character codes and the variable lengths.

ROM Routines

Some of the routines in Section B use routines in the ROM as follows:

rst 16

PRINT the contents of the accumulator

call 3976
Insert the character held in the accumulator at the address in RAM held
the hl register pair.

call 4210

Delete one character at the address in RAM held in the hl register pair.

call 6326
If the accumulator holds the number character (14) set the zero flag and
increment the hl register pair five times.

call 6510
Return in hl the address in RAM of the line whose line number was passed
to the routine in hl.

17

Control variable
of a FOR-NEXT
loop
String
Character array

225 to 250

65 to 90

193 to 218

in

3. Z80A MACHINE LANGUAGE

This chapter opens by explaining some of the more important words like
bit, byte, address and register, which are taken for granted in the remainder
of the book. The number and variety of the Z80A registers is then examined
with particular reference to a small number of example instructions.
Finally a summary of the instruction set is presented.

Perhaps the most difficult aspect for the newcomer to machine code
programming is the number of new words and concepts which must be
absorbed. Therefore before embarking on the main part of the chapter
let us examine one instruction as an example of what is to come. Consider
the following compound instruction which is to be found in many of the
routines in Section B:

Id hl (23627)
The instruction is read as load the hl register pair with the bytes

held at addresses 23627 and 23628. Each of the words in italics is explained
in more detail in this chapter.

The instruction is conveyed in the form of three decimal numbers-42,
75, 92. The first number means:

Id hl, ()
ie. load the hl register pair with the contents of two consecutive memory
addresses. The addresses in question are specified by the second and third
numbers using the calculation:

lower address	 = first number + 256*second number
higher address = lower address + 1
or in this case:
lower address	 = 75 + 256*92 = 23627
higher address = 23627 + 1 = 23628
The word load is just another way of saying copy and h and l can be

thought of as two special locations within the Z80A which are used for
holding numbers. Thus the whole instruction means copy the contents of
23627 into register I and 23628 into register h. Notice that the lower address
is the source for / and the higher address is the source for h.

Bits

A bit is the fundamental unit of computer memory because it can exist
in only one of two states. The two states can be thought of as representing
ON or OFF; TRUE or FALSE; YES or NO; UP or DOWN; MALE or
FEMALE or any other pair of logically opposite conditions. The mechanism
by which a computer memory works is not really important to us but in
the Spectrum the state of a bit is memorised by setting a microscopic
solid-state switch either ON or OFF as appropriate.

The usual notation is to think of one state as the ZERO state and the
other as the ONE state. A bit is considered to be `set' when it is in the

18

state representing ONE and to be `reset' otherwise. This notation allows us
to speak of a given bit pattern in terms of its binary equivalent and by
converting the binary number to a decimal each bit pattern can be given
a unique positive integer decimal number.

For example consider 8 bits of which the rightmost four are set and the
four leftmost are reset. Such a bit pattern is illustrated in table 3.1.

Switch Off Off Off Off On On On On
Setting Reset Reset Reset Reset Set Set Set Set
Binary Pattern 0 0 0 0 1 1 1 1
Bit Number 7 6 5 4 3 2 1 0

Table 3.1. A group of 8 bits with the leftmost four reset and the rightmost
four set.

The binary pattern can be converted to decimal if it is remembered that, in
a binary number, the rightmost column is the units column; the next to the
left is the twos column; the next to the left again is the fours column and so
on, doubling at each move to the left. The decimal equivalent of 00001111 is
therefore:

0*128+0*64+0*32+0*16+1*8+1*4+1*2+1*1 = 15
because there is 1 in each of the ones, twos, fours and eights columns and
0 in the remainder.

It is obviously inconvenient to refer to bits as `the rightmost' or as `the
second from the left' and so the convention is adopted of numbering the
bits from the right starting at zero. It is not entirely coincidental that
when this convention is used the bit number is also the number to which
2 must be raised to give the value of the column.

le 2bit number = column value

Bit 3, for example, appears in the eights column and 2' = 8.

Bytes
The Z80A microprocessor which lies at the heart of the ZX Spectrum
operates on eight bits at a time. (The term "operates" covers all the different
tasks which are built into the instruction set like addition, subtraction,
rotation, logical AND etc. The form of these instructions is explained in
detail later in this chapter). Thus although a bit is the fundamental unit of
computer memory, bits are usually manipulated together in groups of eight.
These groups of eight bits are called a byte (pronounced bite).

Each of the bytes in RAM can be used to hold a single positive whole
number lying between 0 and 255 inclusive by setting or resetting the eight
bits in the byte according to the binary equivalent of the number. The byte
in table 3.1 for example, holds decimal 15.

There are 16384 bytes in the read only memory (ROM) in the ZX
Spectrum and it is the contents of these bytes together with the electronic
organisation which give the computer its characters. The contents are

19

imprinted in the ROM when the Spectrum is manufactured and cannot
subsequently be changed. It is for this reason that the memory is called
read only memory—the contents can be read but they cannot be overwritten.

The unexpanded Spectrum contains a further 16384 bytes of random
access memory (RAM). The term random access is something of a misnomer.
It does not mean that memory is used haphazardly, rather it means that
any byte can be reached (ie accessed) immediately at any time. This facility
contrasts with those of a sequential access memory like a cassette tape for
which it is necessary to move along the memory medium until the particular
portion required is reached.

To the uninitiated, 16384 does not seem to be a convenient number of
bytes to use. In fact it is a very convenient number because 2' 4 = 16384
(ie 16384 is equal to 2 multiplied by itself 14 times). In the computer world,
powers of 2 are "round numbers" just as powers of ten—hundreds,
thousands, millions—are "round numbers" in everyday life. A particularly
important "round number" is 1024 which is 2 to the power of 10. 1024 is
sufficiently close to one thousand to justify using the letter K to represent it.
(K is used for a thousand in the metric system as in kilogramme—Kg,
kilometer—Km etc). Thus 1024 is written as 1K and 16384, which is 16 x 1024,
is written as 16K.

Addresses
A computer must be able to identify each location in its memory so
that it may copy to and from the right location. Hence each location
is given a unique address. An address is a positive whole number,
greater than or equal to zero.

Many of the Z80A instructions are of the form "copy the
contents of the following address into such-and-such a register or
register pair". The instruction:

Id hI, (23627)
which was described at the beginning of this chapter is of this form.
The address following the instruction is held in two bytes and so the
number of locations which the processor can access uniquely is limited
to the number of addresses which can be held in two bytes. This number is
the same as the number of different bit patterns which can be adopted by
the 16 bits which make up the two address bytes ie 2' 6 = 65536.
A two byte address is interpreted in the form:

address = first byte + 256*second byte
The two bytes are sometimes called the low and high bytes respectively.

The two byte form of 16384 for example (the beginning of RAM in the
Spectrum), is low byte = 0; high byte = 64 because:

0 + 256*64 = 16384

The Z80A Registers
A computer does not alter the contents of memory directly when it is
executing a program, rather it copies the contents of a location in memory

20

into a register and operates on the contents of the register. Registers have
a similar function in machine language to that of variables in Basic in
that they are used to store numbers and can be used to control a decision.
They differ from Basic variables in that they are limited in number
and they exist within the processor itself and not in RAM. Also they only
hold one byte, or two bytes in the case of a register pair.

The Z80A is a powerful microprocessor because it has several registers
and so it can hold several numbers at once thereby reducing the need to
make time-consuming transfers between the processor and memory. Most
of the reestershave one or more special features.

The Accumulator Register—a
The accumulator is the most important register because most of the arith-
metic instructions, addition for example, and the logical instructions, eg
logical OR, operate on the contents of this register. In fact it gains its name
because the result of several succesive operations accumulates in the a
register.

Some of the instructions which refer to the accumulator use a second
register or a memory address as a source of data. For example, add a,b
instructs the processor to add the contents of the b register to the a register,
leaving the result in a.

The Flag Register—f

Most of the registers occur in pairs in the sense that some instructions
operate on two registers together. The f or flag register is paired with the
a register in this sense although the link is rather tenuous because it is
limited to the push, pop and exchange instructions.

The f register is rather different from all the others because the eight
individual bits in the register are used as so-called flags to record and
control the sequence of program execution. Each flag is used to indicate
that either one of two logically opposite events has occurred, for example
the zero flag indicates whether the result of the last addition, subtration etc
was zero. Only four of the eight flags are of interest to most users. Their
features are summarised in table 3.2.

The Sign flag is the simplest. By convention if a byte is being used
to represent a signed number then bit seven is used to hold the sign, being
set when the number is negative and reset otherwise. The sign flag reflects
the sign of the last result.

The Zero flag is set if the result of the last operation is zero. It is also
used by comparison instructions which are in effect subtraction instructions
for which the result is discarded.

The carry flag records the overflow which occurs if the result of an
addition is too large to record in the register and if a "borrow" occurs on
subtraction. There are also some rotation instructions in which the bits in
a register are rotated to the left or to the right with bit 7 and 0 being
rotated to or from the carry flag.

21

Mnemonic	 Use
when reset

P
	

Set when the last result is
negative.

NZ
	

Set when the last result is
zero or a match occurred.
Set when the last result is too
large to be fully recorded in
one byte (or two bytes for
operations on register pairs).
Parity—set when the last
result had odd parity.
Overflow—set when an
operation changes bit seven
as a result of an overflow
from other bits.

Flag

Sign

Zero

Carry

Mnemonic

M

Z

C	 NC

Parity/Overflow PE	 PO

Table 3.2. The four flags which control most of the operations of the Z80A.

The Parity/Overflow flag is really two flags in one. It is used as an
overflow flag by arithmetic instructions to indicate if bit seven has
been affected by a carry or a borrow generated by bit six. It is therefore
used to check if the sign bit has been corrupted. Logical instructions use
the same flag to indicate the parity of the result. (The parity of a binary
number is the number of bits set to one. If the number is even the parity is
said to be even, if it is odd, the parity is said to be odd). The flag is set if the
parity of a result is even.

The effect of some instructions depends on the' current setting of
particular flags. For example the instruction:

jr z, d
causes the Z80A to jump over the next d instructions if the zero flag is set.
If the zero flag is not set the processor executes the next instruction
in sequence as usual. Thus the flag register is important because it allows the
processor to make decisions and branch to another part of the program.

The Counting Registers—b and c

The b register and to some extent the c register with which it is paired is
available for a number of purposes but its most important use is as a
counter. We have already seen how the flow of a program can be controlled
by the use of the zero flag in the jr z,d instruction. Another instruction:

djnz d
also use the zero flag to allow loops to be constructed in machine
code using b as a counter in an analogous fashion to FOR-NEXT loops in
Basic.

When the instruction is encountered the Z80A decrements the contents
of the b register, ie reduces the contents by one. If the result is zero then

22

the next instruction in the sequence is executed. If the result is not zero
the routine jumps d instructions. If the programmer uses a negative
value for d the jump goes back earlier in the program and assuming there
are no other branches, the processor will eventually encounter the same
instruction again. Thus by loading the b register with a suitable value
initially and setting the displacement, d, appropriately, a section of code
can be executed a given number of times.

The b register holds one byte only and so it can be set to any
number between 0 and a maximum of 255. Hence at most 255 pales can be
made through the same section of code using this mechanism.

There are no similar facilities for making more than 255 passes
through a loop, but there are a limited number of very powerful instructions
which use all 16 bits of the bc register pair as a counter up to 65535.
An example is the instruction:

cpdr
When it is encountered the Z80A:
I) decrements bc by one;
2) decrements the contents of hl (hl is another register pair)—see below:
3) compares the contents of the accumulator, a, with the contents of the
location in memory whose address is held in hl.

The processor repeats these actions until either a match is found
between a and the memory contents or until be = O. Thus this instruction
can be used to search through memory for an address containing a particular
number.

The Address Register—de and hl

The d and e registers do not have any individual function and are mostly
used as temporary, rapidly accessible memory. They may also be used
together to hold the address of a location in memory which is currently
of interest.

The main function of the h and 1 registers is together to hold the
address of a location in memory and we have already seen how certain
powerful instructions make use of hl for this purpose. h stands for high
byte and 1 stands for low byte and the address is held in the form:

address = 256*h +1
giving a maximum of 65536 unique addresses (ie 0 to 65535 inclusive).

The Index Registers—ix and iy

The ix and iy registers are each 16 bit registers and can only be used as
such, in contrast to the bc, de and hl registers which we have met so far
which can be used in pairs as 16 bit registers or individually as 8 bit
registers. ix and iy are generally used in a similar fashion to the hl
register pair although the instructions which drive them require one more
byte of storage compared to the equivalent hl instructions.

23

For example:
add hl,bc

is a one byte instruction which causes the Z80A to add the contents of the
hi and bc register pairs and leave the result in hl. The same instruction using
ix ie:

add ix, bc
is a two byte instruction.
ix and iy have one further property which is not available to hl and that is
that they can be used with a displacement, d. This means that an instruction
which references (ix + d) does not use the memory location whose address
is held in ix. Rather d is added to the value in ix to give a new
address and the instruction then uses the corresponding memory location.
It is this property which leads ix and iy to be called index registers.

The Stack Pointer—sp
The stack is an area at or near the top of RAM which is used for the
temporary storage of the contents of pairs of registers. It is designed
to grow down the RAM as it is filled and to shrink back up the RAM as
it is emptied. The bottom of the stack is fixed and, in the ZX Spectrum, it
lies immediately below the location pointed to by the RAMTOP
system variable. The top of the stack is below the bottom of the stack
because it grows downwards and shrinks upwards. The address of the
current location of the top of the stack in the sp register.

Transfers to and from the stack are made by means of push and pop
instructions. For example:

push hl
causes the processor to:
1) decrement sp;
2) copy the contents of h to the location pointed to by sp;

3) decrement sp;
4) copy the contents of 1 to the location pointed to by hl.

The pop instruction is the exact reverse. In this manner the most
recent pair of values pushed on to the stack are always the values which are
popped off again. This provides a simple and convenient method of
storing the contents of registers temporarily, perhaps whilst a subroutine
is called. Provided the register pairs are popped in the reverse order to that
in which they were originally pushed, no problems will arise.

The Program Counter—pc
The program counter, pc is a very important 16 bit register because it holds
the address in memory of the next instruction to be executed.

The normal flow of events when an instruction is executed is as follows:
1) Copy the contents of the location pointed to by pc into a special register

within the processor.

24

2) If the instruction is held in several bytes, increment pc and copy the
contents of the next location into a second special register.

3) Increment pc so that it points to the next instruction to be executed.
4) Execute the instruction which has just been copied in.

A jump instruction such as djnz d or jr z, d alters the normal flow of
events by altering pc during step 4). Note that this alteration occurs after
pc has been incremented so the value of a displacement, d, should always
be calculated relative to the position of the instruction following the one
containing the displacement.

The Exchange Registers—af', bc', de' hl'

The Z80A possesses duplicates of each of the a,b,c,d,e,h and 1 registers.
The duplicates are distinguished by the use of a prime, for example a'
is the duplicate a register. No instructions operate on these duplicates
directly but exchange instructions are available to swap two or more
registers out of use and to bring their duplicates into use in their stead.

Exchange instructions are executed very rapidly, much more rapidly
than push and pop instructions for example. The contents are not physically
copied from one register to the other. Rather a set of internal switches are
changed so that the prime register is used by subsequent instructions and the
original register becomes dormant.

About the Instruction Set
There are more than 600 elements in the Z80A instruction set as listed in
appendix A. As there are only 256 different arrangements of 8 bits (because
2 8 = 256) less than half the insructions can be held in one byte. The
remaining instructions are held in two or even three bytes. The first byte of
a two byte instruction is either 203, 221, 237 or 253 (CD, DD, ED, or
FD in hexadecimal). The first two bytes of a three byte instruction are
either 221, 203, or 253, 203, (DD, CB or FD, CB in hexadecimal).

Some instructions are followed by a one byte displacement, d, or a one
byte number, n, or a two byte number or address, nn, to which the
instruction refers. In this way a single instruction can occupy as many as
four bytes in total. For example the instruction:

jr nz, d
which we have already met requires one byte to hold the instruction itself
(32 in decimal, 20 in hexadecimal) and a second byte to hold the displacement,
d.

In this chapter all instructions are referred to by their assembly
language mnemonic or Op Code. The mnemonics are an abbreviated way of
describing each instruction and are for human convenience only. The
Spectrum will not recognise the mnemonics except through the medium of
an assembler program.
Certain conventions are followed as listed here:
1) Single registers are referred to by their letter eg b. Register pairs are

named in alphabetical order eg bc.

25

2) A displacement, d, is taken to be positive if it lies in the range 0 to 127
and negative if it lies between 128 and 255. Larger or smaller numbers
are not allowed.
The negative value is calculated by subtracting d from 256. For example
the unconditional relative jump instruction:

jr d
causes a jump forward 8' bytes if d = 8 and a jump backwards 8 bytes
if d = 248 (= 256 – 8). Remember when calculating a displacement that a
jump is made from the address of the first byte following the instruction.

3) A single byte number, n, lies in the range 0 to 255 inclusive.

4) A two byte number or an address is represented by nn and lies in the
range 0 to 65535 inclusive. The value is calculated by adding the first
n to 256 times the second.

5) nn in brackets — viz (nn) — means "the contents of the location at
address nn", whereas nn without brackets means "the number nn".
Thus

Id hl, (23627)
means load the hl register pair with the contents of locations 23627 and
23628 whereas:

Id hl, 23627
means load hl with the number 23627. Similarily (hl) means "the contents
of the location at the address held in hl" whereas hl without brackets
means "the number in hl".

6) The destination of the result of an instruction is always given first. For
example:

add a,b
means "add the contents of b to the contents of a and leave the result in a.

Glossary of Machine Code Instructions

This section presents a summary of most of the Z80A instruction set. Some
of the more specialised instructions for dealing with interrupts etc have been
omitted.

No Operation nop
This is the simplest instruction and as its name implies the processor does
nothing when it is encountered. It can be very useful when debugging a
routine because it can be substituted temporarily for a suspect instruction
without altering the functioning of the remainder of the routine. It can also
be used to plug gaps introduced when making small alterations to existing
programs or to cause a delay in execution particularly if it is incorporated
into a suitable loop. The decimal code is O.

Load Id
Load instructions are used to move one byte or two bytes between registers
and between registers and memory. There are more than one hundred

26

different load instructions which is more than any other single class. They
fall into eight groups:
1) 8 bit register to register.

The contents of any of the registers a,b,c,d,e,h, or I can be copied to one
another.

2) 8 bit memory to register.
(hl), (ix + d) or (iy + d) can be copied to any of the registers a,b,c,d,e,h or 1.
(bc), (de) or (nn) can be copied to a.

3) 8 bit register to memory.
a, b, c, d, e, h or 1 can be copied to (hl), (ix + d) or (iy + d). a can be
copied to (bc), (de) or (nn).

4) 8 bit register to memory immediate.
An immediate is a number read from the program itself rather than from a
register or from another address in memory. A number, n, can be loaded
into a, b, c, d, e, h, I, (h1), (ix + d) or (iy + d).

5) 16 bit register to register.
The contents of hl, ix or iy can be copied to sp.

6) 16 bit memory to register.
(nn) can be copied to bc, de, hl, ix, iy or sp.

7) 16 bit register to memory.
bc, de, hl, ix, iy or sp can be copied to (nn).

8) 16 bit register immediate.
nn can be loaded into bc, de, hl, ix, iy or sp.

Push and Pop	 push, pop
A push instruction copies the contents of a named 16 bit register to the stack
and decrements the stack pointer twice. A pop instruction does the reverse
so the two instructions can be used to save register values and re-load them
later in the program. The register pairs af, bc, de, hl, ix and iy can each
be pushed and popped.

Exchange	 ex
Exchanges can be made between hl and de, hl and (sp), ix and (sp), iy and
(sp), af and af' and between bcdehl and bcdehl' (a single instruction swaps
all six 8 bit registers).

8 Bit Add and Subtract	 add, sub, etc
a, b, c, d, e, h, 1, (hl), n, (ix + d) and (iy + d) can be added or subtracted to or
from the a register with or without the carry flag. Instructions involving
the carry flag end in c.

8 Bit And, Or and Xor	 and, etc
a, b, c, d, e, h, 1, (hl), n, (ix + d) and (iy + d) can be combined with the a
register using any of the three logical operators. And sets each bit in the
result which was set in both sources; Or sets each bit which was set in
either or both sources and Xor sets each bit which was set in one or other
source but not those which were set in both.

27

Bit Instructions

The eight bits in each register are numbered from 0 to 7 from right to
left. Each of the following operations can be performed on the a, b, c, d, e,
h, 1 registers and on (hl), (ix + d) and (iy + d).

1) Bit Test
The bit test instruction sets the zero flag to the opposite of the
the named bit. Any bit can be tested.

2) Bit Set
Any bit can be set.

3) Bit Reset
Any bit can be reset.

4) Rotate Left
Bit 7 is copied to the carry, the carry is copied to bit 0 and
are copied one place to the left.

5) Rotate Right
Bit 0 is copied to the carry, the carry is copied to bit 7 and
are copied one place to the right.

6) Rotate Left Circular
Bit 7 is copied to the carry and to bit O. All other bits are copied one
place to the left.

7) Rotate Right Circular
Bit 0 is copied to the carry and to bit 7. All other bits
place to the right.

8) Shift Left Arithmetic sla
All bits are copied one place to the left, bit 7 is copied to the carry and
bit 0 is reset.

9) Shift Right Arithmetic
All bits are copied one place to the right, bit
bit 7 is copied to itself.

10)Shift Right Logical
As shift right arithmetic but with bit 7 reset.

Rotate Left Digit 	 rld
Bits 0 to 3 of A are copied to bits 0 to 3 of (hl); bits 0 to 3 of (hl) are copied
to bits 4 to 7 of (hl); bits 4 to 7 of (hl) are copied to bits 0 to 3 of a.

Rotate Right Digit	 rrd
Bits 0 to 3 of a are copied to bits 4 to 7 of (hl); bits 4 to 7 of (hl) are
copied to bits 0 to 3 of (hl); bits 0 to3 of (hl) are copied to bits 0 to 3 of a.

Accumulator Operations
1) Complement a

Every set bit of a is reset, every reset bit is set.

2) Negate a
Complement a and add one.

29

rrc
are copied one

cpl

neg

bit
setting of

set

res

rl
all other bits

rr
all other bits

rlc

sra
0 is copied to the carry and

srl

Compare cp
Compare is like subtract except that only the flags and not the contents of a
are affected. a, b, c, d, e, h, I, (hl), n, (ix + d) and (iy + d) can be compared
with the accumulator.

8 Bit Increment and Decrement	 inc, dec

a, b, c, d, e, h, 1, (hl), (ix + d) and (iy + d) can be incremented or decremented.

16 Bit Increment and Decrement	 inc, dec

bc, de, hl, ix, iy and sp can be incremented or decremented.

16 Bit Add and Subtract add, sub, etc

bc, de, hl, ix can be added with or without carry or subtracted with carry only
to or from hl. bc, de, sp, ix can be added without carry to ix. bc, de, sp and
iy can be added without carry to iy.

Jump, Call and Return

The flag register, f, contains a carry flag, c, a parity flag, p, which is
set if a result is even parity, a sign flag, s, which is set if a result is negative,
an overflow flag, v, which is set on overflow, and a zero flag, z, which is
set on a zero result. These flags can be used to control jumps, subroutine
calls and subroutine returns.

1) Jump	 jp or jr
The following jumps to address nn are possible:
absolute jump (jp); jump on zero or not zero (jp z) and (jp nz); jump on
carry or not carry (jp c and jp nc); jump on positive or negative (jp p and
jp m); jump on p/v = 1 or p/v = 0 (jp pe and jp po).

The following relative jumps to an address d relative to the current
position are available where d is interpreted as lying in the range –128 to
127: absolute relative jump (jr); relative jump on zero or not zero (jr z
and jr nz); relative jump on carry or not carry (jr c and jr nc).

Jumps can also be made to the addresses held in hl, ix or iy (jp (hl), jp (ix),
jp (iy)). The djnz instruction decrements the b register and jumps to d
if b is non zero.

2)Call call
This instruction serves a similar function to the Basic GOSUB command.
If the call condition is met then the program transfers to the instruction
held in address nn. The following calls may be made: absolute call (call);
call on zero or not zero (call z and call nz); call on carry or not carry
(call c and call nc); call on positive or negative (call p and call m); call
on p/v = 1 or p/v = 0 (call pe and call po).

3) Return ret
This instruction serves a similar function to the Basic RETURN
command. Return conditions are available to match each call condition
and returns can also be made from the interrupt and the non-maskable
interrupt. (reti and retn).

28

3) Complement carry
Sets the carry flag if it is reset, resets it otherwise.

4) Set Carry
Sets the carry flag.

5) Decimal adjust
Corrects a after bcd addition and subtraction.

Restart
Save the program counter on the stack and jump to location 8*n where n is
held in the byte following.

Block Handling
These compound instructions are designed to move data or to search for
data in memory.

1) Load and increment	 Idi
Move one byte from (hl) to (de). Increment hl and de and decrement bc.

2) Load, increment and repeat ldir
Move one byte from (hl) to (de). Increment hl and de and decrement
bc. Repeat until bc = 0

3) Load and decrement	 ldd
Move one byte from (hl) to (de) and decrement hl, de and bc.

4) Load, decrement and repeat Iddr
Move one byte from (hi) to (de) and decrement hl, de and bc. Repeat
until bc = O.

5) Compare and increment	 cpi
Compare a and (hl). Increment hl and decrement bc.

6) Compare, increment and repeat cpir
Compare a and (hl). Increment hl and decrement bc. Repeat until
a= (hi)orbc= O.

7) Compare and decrement	 cpd
Compare a and (hl). Decrement hl and bc.

8) Compare, decrement and repeat 	 cpdr
Compare a and (hl). Decrement hl and bc. Repeat until a = (hi) or bc = O.

30

cpl

scf

daa

Section B

31

4. INTRODUCTION

The 40 machine code routines in Section B are listed in a standard format
for ease of use. This introduction explains the format and presents a BASIC
program which can be used to load the routines into memory.

Length:

This is the length in bytes of the routine.

Number of va ri ables:

The execution of some of the routines can be controlled by altering the
values one or more variables passed to the routine via the printer buffer.

Check sum:

Each routine is presented as a sequence of positive whole numbers to be
POKEd into successive locations in memory. The check sum (ie the sum of
all the numbers forming the routine) is given so that the user can ensure
that he has loaded the routine correctly.

Operation:

A brief explanation is given of the task performed by the routine.

Va ri ables:

The names, length and location in the printer buffer of each variable are
defined. A variable which is one byte long must be a positive whole number
between 0 and 255 inclusive and is passed from BASIC or from the
keyboard by using:

POKE location, value
A two byte variable is passed using two commands:

POKE location, value-256*INT (value/256)
POKE location + 1, INT (value/256)

The locations used are in the printer buffer.

Call:

Routines are called using the USR function which must be incorporated
into a command. If the machine code routine does not pass a value back to
BASIC on completion then the RAND command is recommended as in:

RAND USR address

If the value in the be register pair is to be returned then either:

LET A = USR address

or

PRINT USR address

is recommended depending on whether the value returned is to be stored in
a BASIC variable or PRINTed on the screen.

33
32

Error Checks:
The checks made by the routine for illogical or conflicting variable values

etc are explained.

Comments:
Simple variants on the main routines are explained.

Machine Code Listing:
The routine is presented in assembly language with the absolute form in
the third column headed "Numbers to be entered". To load the routine the
numbers in the third column are POKEd in sequence into memory. All the

numbers are in decimal.

How it works:
The mode of operation of the routine is explained with references to the

machine code listing.

Machine Code Loader

Almost all the machine code routines in this volume are relocatable

meaning that they will function correctly no matter where in RAM they are
located. If a routine is not relocatable then the comments paragraph
explains how it must be altered if it is to be stored at a location other than

that intended for it.
We have seen in Section A, chapter 2 that the Spectrum uses various

parts of RAM for different functions and that the area between the
locations pointed to by the RAMTOP and UDG system variables is intended
for the storage of machine code routines.

Program BP can be used to load, alter and move a machine code
routine. With it the user can reset the RAMTOP pointer to give more
space for a routine; enter a routine from the keyboard; step forwards or
backwards through the routine to correct an error and insert or delete parts

of the routine.
When the program is RUN it PRINTS the lowest address at which a

routine can be stored, ie one more than RAMTOP, and the amount of space
available between that address and the end of RAM.

In the 16K machine the lowest address is 32600 unless the user has
altered the RAMTOP system variable. Similarly in the 48K machine the

lowest address is normally 65368.
The 168 bytes at the end of RAM are normally reserved for user

defined graphics characters but the program allows the user to overwrite
this area if he wishes. Alternatively he can choose a new lowest possible address
which the program then puts into the RAMTOP pointer using the CLEAR
command. The program will not accept an address lower than 27000 because
the routine would then trespass on the space required by the program itself.
The program asks for the address at which the routine is to start. Thus the

"14

user can reserve space for several routines and then load them each
separately.

Having given the user an opportunity to change his selection if he is not
satisfied, the program PRINTS the main display. Figure BF1 shows the
form of the display when the "Screen Invert" routine has been loaded at
location 32000. The first column is the address, the second is the contents
of the address and the third is the check sum. The "Screen Invert" routine
is 18 bytes long and its check sum is 1613. It therefore occupies locations
32000 to 32017 and the check sum for location 32017, ie the sum of the
contents of locations 32000 to 32017, is 1613.

When the main display is shown the user's attention is drawn to one
location because the decimal contents FLASH. It is called the current
location and initally it is the selected start address of the routine. The
user enters a whole number between 0 and 255 inclusive which the program
POKEs into the current location and then the following address becomes
the current location. In this way an entire routine can be POKEd into
place, the main display being updated, and scrolled if necessary, at each
step.

The user may choose not to enter a number but to select an option from
those summarised in table BT1 instead. These facilities allow corrections to
be made.

Option

Move the current location backwards by one address.

Move the current location backwards by number addresses.
Move the current location forwards by one address.

Move the current locations forwards by number address.
Insert number bytes each containing zero at the current
location.

Delete number bytes at the current location.
Terminate program.

Table BT1. Options available for editing machine code.

Program BP. Machine Code Loader

lee G G SUB 6200
2200 REM * * jP }} C 3 z c id € a t J ,, ,a ;E, ,- ` ^J .3,13i €F•i
220 LET tlairi=_l+t-^cE?h 237:=0}256}r`c

=:i 2^ 33
22i^^ LET F =PEF1i 2 a ?3 : i-2 sE6 +PEEh 2
230 L ET t =p –!tl i n fß
tißß REM ^^^* *Get start address4.10 PRINT -Lowest Fossi Ete Star

i = "iJ11in r „ -S`s.3xif?kuf3? space av3i €b €e = " t

42e INPUT "DO you WiSh to canthe Lowest=-tart address i';'' orN3	 ••; $

35

Code

b

b number

f

f number

i number

d number

430 IF z $_ .'x'.. OR 2:$="Y - THEN GO
To 7000 CcZ 07440 INPUT "Enter address at whi

Ch tv start Loading machine coda
a	 THEN BEEP450 IF a<m i n OR a :^ p	 -

2.24: GO TO 440
SCnO GO 5U6 8100
510 LET t=t-3+mir:	 „
520 PRINT -YOU c an use ,: - to

L? ^^ t G^ s " , , ,t; 530 LET U =PEEK 236754-255:t-PEEK 2
3576540 IF a <tJ AND u <p THEN PRINT
If YOU Use more than -;u-a;" byt
es, you Idi t 1 overwrite the user
defined g raphics area_55 0 IF a :• =u THEN PRINT "You wit
i overwrite the user defined gra
pics area.-r
 560 INPUT -Is that vr, (Y or N.

^ 570^ 3F 7_47- = - N " OR ^ $_ 'n ' THEN GO
T r? 700 0	 THEN^SCZI^ ^$<^..^,., PrNi.? r$<>

.
 _'• ^

SEEP.2,24: GO TO 550_ ^
700 REMi}i^**Gt] ahead and Load
710 LET L=a
750 GO SUB 62007
760 INPUT "Enter n Um Ee j_ h• f, i, ù
Or t -;z$
770 IF $_ ' THEN-BEEF _2,24:
TO 760750 LET a$=CHR$ (CODE z$(13-32*

;{45t1.3 '? .. E ,. Z }
790 GO TO 600+200 * t a$_ •, & .. 1+300 _c

;a$= 'F"3 +40Re * fa$= 'I"3 +5007+ fa$= 't
..t 1 500* ta$="T"3
300 LET r< -VP.L z$
610 IF L : p THEN BEEP -2,24: G O

?'_^^ ?50
520 IF x<0 OR x>255 OR : > INT x
'THEN SEEP .2,24: GO TO 750
530 POKE LX
540 LET 1=1+1
650 GO TO 740

1000 REM **?E+*sios+e forwards
1010 LET 1=1-1
1.020 IF LEN 7.$>1 THEN LET 1=1+1-
','AL 2"$(2 TO 3
1030 IF 1 <a THEN LET 1=3
1040 GO TO 740
1100 REM *****Move backwards
1w1V LET L=L+11120 IF LEN z$>1 THEN LET 1=1-1+
:, A:.. z$12 TO 3
1130 IF 1 >p THEN LET L =p
1140 GO TO 740
12070 REM *x***Inse:rt
1 2 10 IF LEN z$=1 THEN LET n=1:0 TO 1225
1220 LET n=t?4L 2:$(2 TO 3. IF r 1

36

OR n >p - L OR n < > INT n THEN BEEP
24: GO TO 740

2 5 CL5 . GO 5U6 5100: PRINT TA
5 5; "In_ei Ling in progress"1230 FOR j =p TO L +n STEP -1

24.0 POKE j ,PEEK (j -n)
1250 NEXT j
1260 FOR J=1 TO 14-n-11270 POKE j,0
1280 NEXT j
1290 GO TO 740
7,00 REM *****De Le to

133.0 IF LEN .7_$=1 THEN LET n=1: G
TO 1330

1320 LET n =VAL Z$(2 TO 3: IF n<1-OR n >p - L OR n < ?INT n THEN BEEP^: ,24 : GO TO 740
1330 IF n<0 OR n >p - 1 THEN BEEP
2,24: GO TO 1320
1340 CLS	 GO SUB 5100: PRINT TA

E; "De Le tin' in progress"
1350 FOR j=1 1 TO p-n
1360 POKE J .PEEK f j +n)1370 NEXT J

50 GO TO 740
1400 STOP
1401 PRINT RT 21,7;"P o 9 a:F: term
:)a ted '

11=120 STOP
7000 REM *****Reset RRHTOP
7010 INPUT "Enter new :start addr";a
7020 IF a<27000 OR a>p THEN BEEP

.2,24: GO TO 7 010
7030 CLEAR a-1
7 040 RUN
7t?gq STOP
3.100 CLS
5 220 PRINT TAB 6; "Machine code L_ ader"
6120 RETURN
5200 REM *****Print memory
5210 GO SUB 5100
6220 PRINT "Address	 De ci 7ta t^ecK SUM-
8230 LET c=0
5240 LET 5=1-8: IF 5(a THEN LET=3 : GO TO 5250
5250 FOR J=a TO 5-1
5250 LET i =: +PEEK

2 70 NEXT j~)
8250 LET f =s +17. IF f>p THEN LETf

6_ 2 = 0 FOR J =5 TO
LET c = i +PEEK j

8 310 PRINT RT j -.5 +3 , 1 j ; TR 12;PEEK j; TRS 22;c
5320 NEXT J
84.00 LET p05=1-5+3
64.10 PRINT FiT p05.12; FLASH :1; PEEK
54-20 RETURN

37

Figure BF1. The display produced by the Machine Code loader when the Screen

Invert routine has been loaded at location 32000.

38

Machine c od e loader 5. SCROLL ROUTINES

	

: ,.d.dseçs	 Decimal

	

°,-eL ,,..T	 33

	

^-•^^^ i	 ^

	

^ .= :^02	 64

	

7,-7,0103	 1

	

^'.- ID L4_	 et

:trL et s

	

- •:71:^^,	 22
:-=,,T--_::7-1:717^CGt

	

- _ -̂ , L L (
^^̂
1

	

0+0 .,	 1 5 z2.4

	

_•^^ 1^	 111.?

	

_Y 1 1	 -'S
-=012
.-:y2:-,---:,1:-7i
-__1?

32t 15
7,20:17

L'r-,eck.^.^

33
ct3

122
14-4
Li"% =1^I
5 G ^^

67 1
7 el
525
836

i i ^ '•
1155
14-1=
1r+33

1C 4-

^ u m
Scroll Attributes Left

Length: 23
Number of Variables: I
Check sum: 1574

Operation

This routine scrolls the attributes of all the characters on the screen left by
one character.

Variables
Name
	

Length
	

Location
	

Comment
new attr	 23296

	
The attribute to enter the
rightmost column

Call
RAND USR address

Error Checks
None

Comments
This routine is useful for highlighting areas of text and graphics. To scroll
only the top 22 lines the 24* should be changed to 22.

Machine Code
Label

next line
next char

Listing
Assembly language

ld hl, 22528
Id a, (23296)
ld c, 24
Id b, 31
inc hl
Id e, (hl)
dec hl
Id (h1),e
inc hl
djnz, next char
Id (hl),a
inc hl
dec c
jr nz, next line
ret

Numbers to be entered

33 0 88
58091
14 24*
6 31
35
94
43
115
35
16 249
119
35
13
32 242
201

39

next line

next char
ldb,31

dec hl
Id e, (hl)
inc hl
Id (hl),e
dec hl
djnz, next char
Id (hl),a
dec hl
dec c
jr nz, next line
ret

6 31How it works
The hl register pair is loaded with the address of the attributes area. The
accumulator is loaded with the value of the attribute to be entered in the
right hand column. The c register is loaded with the number of lines to be
scrolled, so that it can be used as a line counter. The b register is set to one
less than the number of characters per line, to be used as a counter.

hl is incremented to point to the next attribute and this is loaded into
the e register. hl is decremented and is then POKEd with the value in e. hl is
incremented again to point to the next attribute. The b register is decremented,
and if it does not hold zero a jump is made back to `next char'. hl now
points to the right hand column, and this is POKEd with the value in the
accumulator. hl is incremented to point to the start of the next line. The line
counter in the c register is decremented. If the resultant value is not zero the
routine loops back to `next line'.

The routine then returns to BASIC.

Scroll Attributes Right

Length: 23
Number of Variables: 1
Check sum: 1847

Operation
This routine scrolls the attributes of all the characters on the screen right by
one character.

Variables
Name
	

Length

new attr
	

1

Call
RAND USR address

Error Checks
None

Comments
This routine is useful for highlighting areas of text and graphics. To scroll
only the top 22 lines change the 24* to 22.

43
94
35
115
43
16 249
119
43
13
32 242
201

How it works

The hl register pair is loaded with the address of the last byte of the
attribute area. The accumulator is loaded with the value of the attribute
to enter the left hand column. The c register is loaded with the number of
lines to be scrolled, so that this can be used as a line counter. The b
register is set to one less than the number of characters per line, for use as a
counter.

hl is decremented to point to the next attribute. The value of this
attribute is loaded into the e register. hl is incremented, and is then POKEd
with the value in the e register. hl is decremented again to point to the next
attribute. The counter in the b register is decremented, and if this does not
hold zero the routine loops back to `next char'.

hl now points to the leftmost column, and this is POKEd with the value
in the accumulator. hl is decremented to point to the right end of the next
line. The line counter is decremented, and if this does not hold zero the
routine loops back to `next line'.

The routine then returns to BASIC.

Scroll Attributes Up

Length: 21
Number of Variables: 1
Check sum: 1591

Operation

This routine scrolls the attributes of all the characters on the screen upwards
by one character.

Location

23296

Comment

The attribute to enter the
left-most column.

Machine Code Listing

Label	 Assembly language

Id hl, 23295
Id a, (23296)
Id c, 24

Numbers to be entered

33 255 90
58 0 91
14 24*

Variables
Name

new attr
Length

1
Location

23296
Comments

The attribute to enter the
bottom line.

4140

Call
RAND USR address

Error Checks
None

Variables
Name

new attr
Length

1
Location

23296
Comments

The attribute to enter the
top line

Comments
This routine is useful for highlighting areas of text or graphics. To scroll the
top 22 lines only, change the 224* to 160.

Machine Code Listing
Label	 Assembly language

	 Numbers to be entered

Id hl, 22560
	

33 32 88

Id de, 22528
	

17088

Id bc, 736
	

1 224* 2

ldir
	 237 176

Id a, (23296)
	

58091

Id b, 32
	

6 32

next char	 Id (de),a
	

18

inc de
	 19

djnz next char
	

16 252

ret
	

201

How it works
hl is loaded with the address of the second line of attributes, de is loaded
with the address of the first line and bc is loaded with the number of

bytes to be moved.
The bc bytes starting at hl are copied to de, using the `ldir' instruction.

This results in de pointing to the bottom line of attributes. The accumulator
is loaded with the code of the attribute to be entered into the bottom line.
The b register is then loaded with the number of characters in one line, to be

used as a counter.
de is POKEd with the value in the accumulator, and then incremented

to point to the next byte. The counter is decremented, and if it does not hold
zero the routine loops back to `next char'. The routine then returns to

BASIC.

Scroll Attributes Down
Length: 21
Number of Variables: 1

Check sum: 2057

Operation
This routine scrolls the attributes of all the characters on the screen down-

wards by one character.

42

Call
RAND USR address

Error Checks
None

Comments

This routine is useful for highlighting areas of text and graphics. To scroll
only the top 22 lines the following changes must be made:

223* to 159
255** to 191
224*** to 160

Machine Code Listing
Label	 Assembly language	 Numbers to be entered

Id hl, 23263
	

33 223* 90
Id de, 23295
	

17 255** 90
Id bc, 736
	

1 224*** 2
lddr	 237 184
Id a, (23296)
	

58 0 91
Id b, 32
	

6 32
next char	 Id (de),a	 18

dec de	 27
djnz next char	 16 252
ret
	

201

How it works

The hl register pair is loaded with the address of the last attribute on the
23rd line. de is loaded with the address of the last attribute on the 24th
line. bc is loaded with the number of bytes to be moved. Then the `lddr'
instruction moves the bc bytes ending at hl so that they end at de. This
results in de holding the address of the last attribute on the first line.

The accumulator is then loaded with the value of the attribute to enter
the top line. The b register is loaded with the number of bytes in the top
line, to be used as a counter. de is POKEd with the value in the accumulator,
and de is decremented to point to the next byte. The counter is decremented,
and if it does not hold zero a jump is made to `next char'.

The routine then returns to BASIC.

43

Left Scroll by One Character

Length: 21
Number of Variables: O
Check Sum: 1745

Operation
This routine scrolls the contents of the display file one character to the left.

Call
RAND USR address

Error Checks
None

Comments
This routine is useful when using the screen as a `window' showing just a
small area of a larger display area. The `window' being moved using scroll
routines.

incremented to address the next byte, and the counter in the b register is
decremented. If this does not hold zero the routine loops back to `next byte'.

If the b register holds zero, the last byte of the line has been copied, and
hl points to the right most byte. This is then POKEd with zero, and hl
incremented to point to the next line. The line counter in the accumulator
is decremented and if this does not hold zero a jump is made to `next line'.

The routine then returns to BASIC.

Right Scroll by One Character

Length: 22
Number of Variables: O
Check sum: 1976

Operation

This routine scrolls the contents of the display file one character to the right.

Call
RAND USR address

Machine Code Listing
Label	 Assembly language Numbers to be entered

Error Checks
None

Id hl, 16384	 33 0 64
Id a,l	 85
Id a,192	 62 192

Id b,31	 6 31

inc hl	 35
Id e, (hl)	 94
dec hl	 43
Id (hl),e	 115
inc hl	 35
djnz next byte	 16 249
Id (hl),d	 114
inc hl	 35
dec a	 61
jr nz, next line	 32 242
ret	 201

How it works
The hl register pair is loaded with the address of the display file, and the d
register is set to zero. The accumulator is loaded with the number of lines
on the scrren. The b register is set to one less than the number of characters
per line, as this is the number of bytes to be copied.

hl is incremented to point to the next byte, and the e register is loaded
with its value. hl is decremented and POKEd with the value in e. hl is

44

Comments

This routine is useful when using the screen as a `window' showing just a
small area of a larger display area. The `window' being moved using scroll
routines.

Machine Code Listing
Label	 Assembly language

	
Numbers to be entered

Id hl, 22527
	

33 255 87
Id d, O
	

22 O
Id a, 192
	

62 192
next line	 Id b, 31

	
6 31

next byte	 dec hl
	

43
Id e, (hl)
	

94
inc hl
	

35
Id (hl),e	 115
dec hl
	

43
djnz next byte	 16 249
Id (hl),d
	

114
dec hl
	

43
dec a	 61
jr nz, next line	 32 242
ret
	

201

45

next line

next byte

How it works
The hl register pair is loaded with the address of the last byte of the display
file, and the d register is set to zero. The accumulator is loaded with the
number of lines on the screen. The b register is set to one less than the
number of characters per line, to be used as a counter.

The hl register pair is decremented to point to the next byte, and its
value is loaded into the e register. hl is then incremented and POKEd with
the value in e. hl is decremented to point to the next byte, and the counter in
the b register is decremented. If the b register does not hold zero the routine
loops back to `next byte'.

If the b register does hold zero, hl points to the leftmost byte of the
line. This is then POKEd with zero, and hl is decremented to point to the
next line. The counter in the accumulator is then decremented and if this
does not hold zero, a jump is made to `next line'.

The routine then returns to BASIC.

Up Scroll by One Character

Length: 68

Number of Variables: O

Check sum: 6328

Operation
This routine scrolls the contents of the display file upwards by eight pixels.

Call
RAND USR address

Error Checks

None

Comments

None

Machine Code Listing

Label	 Assembly language	 Numbers to be entered

Id hl, 16384	 33 0 64

Id de, 16416	 17 32 64

save	 push hl	 229

push de	 213

Id c,23	 14 23

next line	 Id b,32	 6 32

copy byte	 Id a, (de)	 26
ld (hl),a	 119

id a,c	 121

and 7	 230 7

cp 1	 254 1
jr nz, next byte	 32 2
sub a	 151
Id (de),a	 18

next byte
	

inc hl	 35
inc de	 19
djnz copy byte	 16 241
dec c	 13
jr z, restore	 40 19
Id a,c	 121
and 7	 230 7
cp O	 254 0
jr z, next block	 40 22
cp 7	 254 7
jr nz, next line	 32 225
push de	 213
Id de, 1792	 17 0 7
add hl,de	 25
pop de	 209
jr next line	 24 217

restore	 pop de	 209
pop h l	225
inc d	 20
inch	 36
Id a,h	 124
cp 72	 254 72
jr nz, save	 32 204
ret	 201

next block	 push hl	 229
Id hl, 1792	 33 0 7
add hl,de	 25
ex de,hl	 235
pop hl	 225
jr next line	 24 198

How it works

The hl register pair is loaded with the address of the display file, and de
is loaded with the address of the byte eight lines down. hl and de are
saved on the stack. The c register is loaded with one less than the number
of `PRINT lines' on the screen. The b register is loaded with the number of
bytes in one line of the display, to be used as a counter.

The accumulator is loaded with the byte addressed by de and this is
POKEd into hl. The accumulator is loaded with the contents of the c
register and if this holds, 1,9 or 17 then de is POKEd with zero. hl and de
are incremented to point to the next bytes, the counter in the b register is
decremented, and if this does not hold zero a jump is made to `copy byte'.

46	 l	 47

Machine Code Listing

Label
	

Assembly language

Id hl, 22527
Id de, 22495

save push hl
push de
Id c, 23

next line
	

Id b,32

copy byte
	

Id a, (de)
Id (hl),a
Id a,c
and 7
cp 1
jr nz, next byte
sub a
Id (de),a

Numbers to be entered

33 255 87
17 223 87

229
213
14 23

6 32

26
119
121
230 7
254 1
32 2
151
18

The line counter in the c register is then decremented. If this holds zero
a jump is made to `restore'. If c holds 8 or 16 then a jump is made to
`next block'. If c does not hold 7 or 15 then the routine loops to `next line'.
1792 is added to hl, so that hl points to the next block of the screen. The

routine then jumps to `next line'.
At `restore' de and hl are retrieved from the stack, and 256 is added to

each. Thus, de and hl point one line below the position that they held on the
previous loop. If hl holds 18432 the routine returns to BASIC, otherwise a
jump is made to `save'. At `next block', 1792 is added to de so that de points
to the next block of the screen. The routine then loops to `next line'.

Down Scroll by One Character

Length: 73

Number of Variables: O

Check sum: 7987

Operation
This routine scrolls the contents of the display file downwards by eight pixels.

Call
RAND USR address

Error Checks

None

Comments

None

48

next byte
	

dec hl	 43
dec de	 27
djnz copy byte	 16 241
dec c	 13
jr z, restore	 40 21
Id a,c	 121
and 7	 230 7
cp O	 254 0
jr z, next block	 40 24
cp 7	 254 7
jr nz, next line	 32 225
push de	 213
Id de, 1792	 1707
and a	 167
sbc hl,de	 237 82
pop de	 209
jr next line	 24 215

restore	 pop de	 209
pop hl	 225
decd	 21
dec h	 37
Id a,h	 124
cp 79	 254 79
ret z	 200
jr save	 24 201

next block
	

push hl	 229
Id hl, 1792	 33 0 7
ex de, hl	 235
and a	 167
sbc hl,de	 237 82
ex de, hl	 235
pop hl	 225
jr next line	 24 193

How it works

The hl register pair is loaded with the address of the last byte of the display
file, and de is loaded with the address of the byte eight lines up. hl and de
are saved on the stack. The c register is then loaded with one less than the
number of `PRINT lines' on the screen. The b register is loaded with the
number of bytes in one line of the display, to be used as a counter.

The accumulator is loaded with the byte addressed by de, and this is
POKEd into hl. The accumulator is loaded with the contents of the c
register, and if this holds 1,9 or 17 then de is POKEd with zero. hl and de
are then decremented to point to the next bytes of the display. The counter
in the b register is decremented and if this does not hold zero a jump is made
to `copy byte'.

49

The line counter in the c register is decremented, and if this holds zero
a jump is made to `restore'. If c holds 8 or 16 then a jump is made to `next
block'. If c does not hold 7 or 15 the routine loops to `next line'. 1792 is
then subtracted from hl, so that hl points to the next block of the screen.

The routine jumps to `next line'.
At `restore' de and hl are retrieved from the stack, and 256 is subtracted

from both. Thus, de and hl point one line above the position that they held
on the previous loop. If hl holds 20479 the routine returns to BASIC,
otherwise a jump is made to `save'. At `next block' 1792 is subtracted from
de, so that de points to the next block of the screen. The routine then loops

to `next line'.

Left Scroll by One Pixel

Length: 17

Number of Variables: O

Check sum: 1828

Operation
This routine scrolls the contents of the display file one pixel to the left.

Call
RAND USR address

Error Checks

None

Comments
This routine gives a smoother movement than left scroll by one character
but eight calls are required to move the display by one full character.

Machine Code Listing

Label	 Assembly language
	 Numbers to be entered

ld hl, 22527
	

33 255 87

Id c, 192
	

14 192

next line	 ld b, 32
	

6 32

or a
	 183

next byte	 rl (hl)
dec hl

	 203 22
43
16 251djnz next byte	
13dec c
32 245jr nz, next line	
201ret

Sn

How it works

The hl register pair is loaded with the address of the last byte of the display
file, and the c register is loaded with the number of lines in the display file
to be used as a line counter. The b register is loaded with the number of
bytes in one line, for use as a counter. The carry flag is then set to zero.

The byte addressed by hl is then rotated one bit to the left, the carry
flag being copied into the rightmost bit, and the leftmost bit being copied
into the carry flag. The hl register pair is decremented to point to the next
byte and the counter in the b register is decremented. If this does not hold
zero the routine loops back to `next byte'. The line number is decremented,
and if this is not equal to zero the routine jumps back to `next line'.

The routine then returns to BASIC.

Right Scroll by One Pixel

Length: 17

Number of Variables: O

Check sum: 1550

Operation

This routine scrolls the contents of the display file one pixel to the right.

Call

RAND USR address

Error Checks

None

Comments

This routine gives a smoother movement than Right Scroll by One Character
but eight calls are required to move the display by one full character.

Machine Code Listing

Label
	

Assembly language	 Numbers to be entered
ld hl, 16384
	

33 0 64
Id c, 192
	

14 192
next line	 Id b, 32

or n

next byte	 rr (hl)
	

203 30
inc hl
	

35
djnz next byte
	

16 251
dec c
	

13
jr nz, next line	 32 245
ret
	

201

51

6 32
183

subtract

next block

add

How it works
The hl register pair is loaded with the address of the display file, and the c
register is loaded with the number of lines in the display to be used as a line
counter. The b register is loaded with the number of bytes in one line, to be
used as a counter. The carry flag is then set to zero. The byte addressed by
hl is then rotated one bit to the right, the carry flag being copied into the
leftmost bit, and the rightmost bit being copied into the carry flag. The hl
register pair is incremented to point to the next byte and the counter in the
b register is then decremented. If this does not hold zero the routine loops
back to `next byte'. The line counter is decremented, and if this is not equal
to zero the routine jumps back to `next line'.

The routine then returns to BASIC.

Up Scroll by One Pixel

Length: 91
Number of Variables: O
Check sum: 9228

Operation
This routine scrolls the contents of the display file upwards by one pixel.

Call

RAND USR address

Error Checks

None

Comments

None

Machine Code Listing

Label	 Assembly language
	

Numbers to be entered

Id hl, 16384
	

33 0 64
ld de, 16640
	

17065
Id c, 192
	

14 192

next line	 ld b, 32
	

6 32

next byte	 ld a, (de)
	

26
ld (hl),a
	 119

Id a,c
	 121

cp 2
	

254 2
jr nz, next byte
	 32 2

sub a
	 151

Id (de),a
	 18

inc de
inc hl
djnz copy byte
push de
Id de, 224
add hl,de
ex (sp),hl
add hl,de
ex de,hl
pop hl
dec c
Id a,c
and 7
cp O
jr nz, subtract
push de
Id de, 2016
and a
sbc hl,de
pop de
jr next block
cp 1
jr nz, next block
push hl
ex de,hl
Id de, 2016
and a
sbc hl,de
ex de,h1
pop hl

Id a,c
and 63
cp O
jr nz, add
Id a,7
add a,h
ld h,a
jr next line
cp 1
jr nz, next line
Id a,7
add a,d
Id d,a
Id a,c
cp 1
jr nz, next line
ret

19
35
16 243
213
17 224 0
25
227
25
235
225
13
121
230 7
254 0
32 10
213
17 224 7
167
237 82
209
24 14

254 1
32 10
229
235
17 224 7
167
237 82
235
225

121
230 63
254 0
32 6
62 7
132
103
24 187

254 1
32 183
62 7
130
87
121
254 1
32 174
201

next byte

52 53

Machine Code Listing
Label	 Assembly language

Id hl, 22527
Id de, 22271
Id c, 192

Id b, 32

Id a, (de)
Id (h1),a
Id a,c
cp 2
jr nz, next byte
sub a
Id (de),a

dec de
dec hl
djnz, copy byte
push de
Id de, 224
and a
sbc hl,de
ex (sp), hl
and a
sbc hl,de
ex de,hl
pop hl
dec c
Id a,c
and 7
cp O
jr nz, add
push de
Id de, 2016
add hl,de
pop de
jr next block
cp 1
jr nz, next block
push
Idh 1

 hl
,2016

add hl,de
ex de,hl
pop hl

Id a,c
and 63
cp O
jr nz, subtract

55

How it works
The hl register pair is loaded with the address of the display file, and the
de register pair is loaded with the address of the first byte of the second
line of the display. The c register is loaded with the number of lines in the
display. The b register is loaded with the number of bytes in one line, to be
used as a counter.

The accumulator is loaded with the byte addressed by de. This is then
POKEd into the address in hl. The accumulator is loaded with the contents
of the c register. If this contains the value two, de points to the bottom line
of the screen, and so this is POKEd with zero. de and hl are then incremented
to point to the next bytes. The counter in the b register is then decremented
and if it does not hold zero the routine loops to `copy byte'.

224 is added to both the hl and de register pairs, so that they point to
the next line of the display. The line counter, in the c register, is decremented.
If the value in c is not a multiple of eight a jump is made to `subtract'.
2016 is subtracted from hl, and a jump made to `next block'. This is to
point hl at the next set of eight lines.

At `subtract', if the value (c-1) is not a multiple of eight a jump is made
to `next block', otherwise 2016 is subtracted from de so that de points at
the next set of eight lines. At `next block', if c is a multiple of 64, 1792 is
added to hl, and a jump is made to `next line' so that hl points to the next
block of 64 lines. At `add', if (c-1) is a multiple of 64, 1792 is added to de
so that de points to the next block of 64 lines. If c does not hold 1 the
routine jumps to `next line', otherwise the routine returns to BASIC.

Down Scroll by One Pixel

Length: 90
Number of Variables: O
Check sum: 9862

Operation
This routine scrolls the contents of the display file downwards by one pixel.

Call
RAND USR address

Error Checks
None

Comments
None

54

next line

copy byte

next byte

add

next block

Numbers to be entered

33 255 87
17 255 86
14 192
6 32

26
119
121
254 2
32 2
151
18

27
43
16 243
213
17 224 0
167
237 82
227
167
237 82
235
225
13
121
230 7
254 0
32 8
213
17 224 7
25
209
24 11
254 1
32 7
229
33 224 7
25
235
225

121
230 63
254 0
32 6

subtract

ld a,h	 124
sub 7	 214 7
ld h,a	 103
jr next line	 24 188

cp 1	 254 1
jr nz, next line	 32 184
ld a,d	 122
sub 7	 214 7
ld d,a	 87
id a,c	 121
cp 1	 254 1
jr nz, next line	 32 175
ret	 201

How it works
The hl register pair is loaded with the address of the last byte of the display
file, and the de register pair is loaded with the address of the byte one line
above the last byte. The c register is loaded with the number of lines in the
display. The b register is loaded with the number of bytes in one line, to be
used as a counter.

The accumulator is loaded with the byte addressed by de. This is then
POKEd into the address stored in hl. The accumulator is loaded with the
contents of the c register. If this contains the value two, de points to the top
line of the screen, and so this is POKEd with zero. de and hl are then
decremented to point to the next bytes. The counter in the b register is
decremented, and if it does not hold zero the routine loops to `copy byte'.

224 is subtracted from both hl and de, so that they point to the next line
of the display. The line counter in the c register, is decremented. If the
value in c is not a multiple of eight a jump is made to `add'. 2016 is then
added to hl, and a jump is made to `next block'. This is to point hl at
the next block of eight lines.

At `add' if the value (c-1) is not a multiple of eight a jump is made to
`next block'. 2016 is then added to de so that de points at the next set of
eight lines. At `next block', if c is a multiple of 64, 1792 is subtracted from
hl so that hl points to the next block of 64 lines, and a jump is made to
`next line'. At `subtract', if (c-1) is a multiple of 64, 1792 is subtracted
from de, so that de points to the next block of 64 lines. If c does not hold
one, the routine jumps to `next line', otherwise the routine returns to BASIC.

56

6. DISPLAY ROUTINES

Merge Pictures

Length: 21
Number of Variables: 1
Check sum: 1709

Operation

This routine merges a picture stored in RAM (using the `Copy' routine
elsewhere in this book) with the current screen display. The attributes are
not changed.

Variables

Name	 Length
	

Location	 Comment
screen store	 2
	

23296	 address in RAM of
stored picture

Call

RAND USR address

Error Checks

None

Comments

To merge pictures the routine should be used as listed. However, interesting
effects can be produced by replacing `or (hl) 182' instruction by `xor (hl)
174' or `and (111) 166'.

Machine Code Listing
Label	 Assembly language

Id hl, 16384
Id de, (23296)
Id bc, 6144

next byte:	 Id a, (de)
or (hl)
Id (hl),a
inc hl
inc de
dec bc
Id a,b
or c
jr nz, next byte
ret

57

Numbers to be entered

33 0 64
237 91 0 91
1 0 24
26
182
119
35
19
11
120
177
32 246
201

How it works
The hl register pair is loaded with the address of the display file and the de
register pair is loaded with the length of the display, so that it can be used

as a counter.
The accumulator is loaded with the byte at the address stored in de, and

this is logically 'OR'ed (see Glossary) with the next byte of the display file.
The resultant value is then loaded back into the display.

hl and de are moved onto the next position, and the counter is
decremented. If the counter is not zero the routine then loops back to repeat

the process on the next byte.

Screen Invert

How it works

The H register pair is loaded with the address of the display file and bc
is loaded with its length. The d register is set to 255. Each time the routine
loops back to `next byte' the accumulator is loaded from d. This method is
used, rather than the `Id a, 255' instruction because `Id a,d' takes
approximately half the time taken by the `Id a, 255' instruction. The value
of the byte stored at hl is subtracted from the accumulator, and the result is
then loaded back into the same byte, thus inverting it.

hl is incremented to point to the next byte, and the counter, bc, is
decremented. If the counter is not zero the routine loops back to `next byte'.
If the counter is zero, the routine returns to BASIC.

Length: 18
Number of Variables: O

Check sum: 1613

Length: 20

Number of Variables: 1

Check sum: 1757

Invert Character Vertically

Operation
Inverts all of the display file—where a point is on it is turned off, and where

a point is off it is turned on.

Call

RAND USR address

Error Checks

None

Operation

This routine inverts a character vertically eg an up-arrow would become a
down-arrow and vice versa.

Variables

Name
	

Length
	

Location
	

Comment
chr. start
	

2
	

23296
	

address of character data
in RAM

Comments
This routine can be used in games programs to produce an effective explosion.
The effect is increased if this routine is called several times, with some form

of sound added.

Machine Code Listing

Label	 Assembly language	 Numbers to be entered

Id hl, 16384
Id bc, 6144
Id d, 255

Id a,d
sub (hl)
Id (hl),a
inc hl
dec bc
Id a,b
or c
jr nz, next byte
ret

58

Call

RAND USR address

Error Checks

None

Comments

This routine is useful in games such as `Minefield' and `Puckman' because
symbols can change direction without using more than one character.

Machine Code Listing

Label	 Assembly language	 Numbers to be entered
Id hl, (23296)	 42 0 91
Id d,h	 84
Id e,l	 93
Id b,8	 6 8

next byte	 Id a, (hl)	 126
inc hl	 35

59

next byte

33 0 64
1 0 24
22 255

122
150
119
35
11
120
177
32 247
201

push of
	

245
djnz next byte
	 16 251

Id b,8
	

6 8

replace	 pop of
	

241
Id (de),a
	 18

inc de
	 19

djnz replace
	 16 251

ret
	 201

How it works
The hl register pair is loaded with the address of the character data in RAM.
This is then copied into de. The b register is set to 8 to be used as a counter.

For each byte, the accumulator is loaded with the present value, hl is
incremented to point to the next byte, and the accumulator is pushed on to
the stack. The counter is decremented, and if it is not zero the routine loops
back to repeat the process for the next byte. The b register is then re-loaded
with 8 for use as a counter again.

For each byte, the accumulator is popped from the stack. and poked
into the address stored in de. de is incremented to point to the next byte and
the counter is decremented. If this is not zero the routine loops back to
`replace'. A return is then made to BASIC.

Invert Character Horizontally

Length: 19
Number of Variables: 1
Check sum: 1621

Operation
This routine inverts a character horizontally eg a left-arrow becomes a
right-arrow and vice versa.

Machine Code Listing
Label	 Assembly language	 Numbers to be entered

Id hl, (23296)	 42091
Id a, 8
	

62 8
next byte	 Id b, 8

	
6 8

next pixel	 rr (hl)
	

203 30
rl c	 203 17
djnz next pixel
	

16 250
Id (hl),c	 113
inc hl
	

35
dec a	 61
jr nz, next byte	 32 243
ret
	

201

How it works

The hl register pair is loaded with the address of the character data in RAM,
and the accumulator is loaded with the number of bytes to be inverted. The
b register is loaded with the number of bits in each byte, to be used as a
counter.

The byte at the address in hl is rotated to the right so that the right-most
bit is copied into the carry flag. The c register is rotated leftwards so that the
carry flag is copied into the rightmost bit. The counter stored in the b
register is decremented. If the counter is not zero, a jump is made back to
`next pixel'. The inverted byte, which is stored in the c register, is POKEd
back to the address that it originally came from.

hl is incremented to point to the next byte, and the accumulator is
decremented. If the accumulator does not hold zero a jump is made back to
`next byte'.

A return is then made to BASIC.

Rotate Character Clockwise

Length: 42
Number of Variables: 1
Check sum: 3876

Operation

This routine rotates a character through 90° clockwise eg an up-arrow
becomes a right-arrow.

Variables
Name
	

Length
	

Location
	

Comment
chr. start
	

2
	

23296	 address of character data in
RAM

61

Variables
Name
	

Length
	

Location
	

Comment

chr. start
	

2
	

23296
	 address of character data in

RAM

Call
RAND USR address

Error Checks
None

Comments
None

60

Call

RAND USR address

Error Checks

None

Comments

This routine is useful in games and in serious applications eg labelling graphs.

Machine Code Listing

Label	 Assembly language	 Numbers to be entered

Id hl, (23296)
	

42 0 91

Id e, 128
	

30 128

next bit
	 push hl
	

229

Id c, O
	

14 0

1d b,1
	

61

next byte
	

lda,e
and (hl)
cp O
jr z, not set
ld a,c
add a,b
Id c,a

not set
	 sla b

inc hl
jr nc, next byte
pop hl
push be
srl e
jr nc, next bit
Id de,7
add hl,de
ld b,8

replace
	 pop de

Id (h1),e
	 209

115
43dec hl
16 251djnz replace
201ret

How it works
Each character consists of an 8 x 8 group of pixels, each of which can be
turned on (= 1) or off (=0). Consider any bit B 2 of byte B, in Figure B1.

The data

a

 held at the location (B 2 , B,) in the matrix will be

\

N,	 N31
N 2 N,/

62

where:

N, = the byte at which the pixel (B 2 , B 1) will be inserted after rotation.
N 2 = the bit in N, at which it will be inserted.

N, = the value that the bit currently represents.

N, = the value of the bit N2.

Each byte of the rotated character will be built up one at a time, by
adding the values of all the bits N 2 that will be in the new byte.

The hl register is loaded with the address of the first byte of the
character in RAM. The e register is loaded with the value of the byte which
has bit 7 on and bits 0-6 off ie 128. The hl register is saved on the stack.
The c register, to which data will be added giving the new value of the byte
being built, is loaded with zero. The b register is loaded with the value of the
byte which has bit O on and bits 1-7 off, ie 1.

The accumulator is loaded with the contents of the e register, (N3).
This is `AND'ed with the byte whose address is stored in hl. If the result is

1 128 2 64 3 32 4 16 5 8 6 4 7 2 8 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 128 2 64 3 32 4 16 5 8 6 4 7 2 8 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 128 2 64 3 32 4 16 5 8 6 4 7 2 8 1

2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

1 128 2 64 3 32 4 16 5 8 6 4 7 2 8 1

3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8

1 128 2 64 3 32 4 16 5 8 6 4 7 2 8 1

4 16 4 16 4 16 4 16 4 16 4 16 4 16 4 16

1 128 2 64 3 32 4 16 5 8 6 4 7 2 8 1

5 32 5 32 5 32 5 32 5 32 5 32 5 32 5 32

1 128 2 64 3 32 4 16 5 8 6 4 7 2 8 1

6 64 6 64 6 64 6 64 6 64 6 64 6 64 6 64

1 128 2 64 3 32 4 16 5 8 6 4 7 2 8 1

7 128 7 128 7 128 7 128 7 128 7 128 7 128 7 128

7	 6	 5	 4	 3
	

2
	

1
	

0

Bit (B2)

Figure BI. Key to the character rotation routine

63

123
166
254 0
40 3
121
128
79

203 32
35
48 242
225
197
203 59
48 231
17 7 0
25
6 8

1

2

3

4
Byte (B ,)

5

6

7

8

zero a jump is made to `not set', as the pixel addressed by e and hl is turned
off. If it is turned on the accumulator is loaded with the present value of the
byte, (N,). The b register, (N,), is added to the accumulator and this is
loaded into c. The b register is then adjusted to point to the next bit of N,.
hl is increased to point to the next byte, (B,). If the byte N, is not complete
the routine loops back to `next byte'.

hl is retrieved from the stack, to point to the first byte of the character
again. be is saved on the stack, holding the value of the last byte to be
completed in c. The e register is adjusted to address the next bit of each byte.
If the rotation is not complete a jump is made to `next bit'.

de is loaded with 7, and this is added to hl so that hl points to the
last byte of data. The b register is loaded with the number of bytes to be
retrieved from the stack. For each byte, the new value is copied into e, and
this is POKEd into hl. hl is decremented to point to the next byte, and the
counter in the b register is decremented. If the counter does not hold zero a
jump is made to `replace'.

The routine then returns to BASIC.

Attribute Change

Length: 21
Number of Variables: 2
Check sum: 1952

Operation
This routine alters the attributes of all the characters on the screen in a
specified manner eg the ink colour could be changed, the whole screen
could be set to flash etc.

Variables
Name
	

Length

data saved
	

1

new data
	 1

Call
RAND USR address

Error Checks
None

Comments
Individual bits of the attributes, of each character, can be changed, by
using the machine code instructions `and' and `or'.

64

Machine Code Listing
Label
	

Assembly language	 Numbers to be entered
Id hl, 22528
Id bc, 768
Id de, (23296)
Id a, (hl)
and e
or d
Id (hl), a
inc hl
dec be
Id a,b
or c
jr nz, next byte
ret

How it works

The hl register pair is loaded with the address of the attributes area, and the
be register pair is loaded with the number of characters in the display. The d
register is loaded with the value `new data', and the e register is loaded with
`data saved'.

The accumulator is loaded with the byte addressed by hl, and the bits
are adjusted according to the values of the d and e registers. The result
is POKEd back into hl. hl is incremented to point to the next byte, and
the counter in be is decremented. If be does not hold zero the routine loops
to `next byte'.

The routine then returns to BASIC.

Attribute Swap

Length: 22
Number of Variables: 2
Check sum: 1825

Operation

every occurrence by another value.
This routine searches the attributes area for a certain value, and replaces

Variables
Name Length Location Comment
old value 1 23296 Value of byte to be replaced
new value 1 23297 New value of replaced byte

Call
RAND USR address

65

Location

23296

23297

Comment

bits of attribute not to be
altered
new bits to be inserted into
attribute

next byte

33 0 88
1 0 3
237 91 0 91
126
163
178
119
35
11
120
177
32 246
201

Error Checks

None

Comments
This routine is useful for highlighting areas of text and graphical characters.

Machine Code Listing

Label	 Assembly language
	 Numbers to be entered

Id hl, 22528
	

33 0 88

Id bc, 768
	

1 0 3

Id de, (23296)
	

237 91 0 91

Id a, (hl)	 126

cp e	 187
jr nz, no change	 32 1

ld (hl), d	 114

inc hl	 35
dec bc	 11

Id a,b	 120

or c	 177

jr nz, next byte	 32 245

ret	 201

How it works
The hl register pair is loaded with the address of the attributes area, and
bc is loaded with the number of characters on the screen. The e register is
loaded with the `old value', and the d register is loaded with the `new

value'.
The accumulator is loaded with the byte addressed by the hl register

pair. If the accumulator holds the value of the e register the byte addressed
by hl is POKEd with the contents of the d register. hl is then incremented
to point to the next byte, and the counter in bc is decremented. If bc
does not hold zero, a jump is made to `next byte'.

The routine then returns to BASIC.

Region Filling

Length: 263

Number of Variables: 2

Check sum: 26647

Variables

Name	 Length	 Location	 Comment
x co-ord	 1	 23296	 x co-ordinate of start

position
y co-ord	 1	 23297	 y co-ordinate of start

position

Call

RAND USR address

Error Checks

If the y co-ordinate is more than 175, or POINT (x,y) = 1 the routine
returns to BASIC immediately.

Comments

This routine is not relocatable, the start address being 31955. To copy this
routine to another address use the method given for the `RENUMBER'
routine. If 31955 is used for the start address of this routine and 32218 is
used as the start address of `RENUMBER' they may be held in RAM simul-
taneously. When shading very irregular shaped regions, a large amount of
spare RAM is needed. If this is not available the routine may crash.

Machine Code Listing
Label	 Assembly language	 Numbers to be entered

ld hl, (23296)	 42 0 91
Id a,h	 124
cp 176	 254 176
ret nc	 208
call subroutine	 205 143* 125*
and (h1)	 166
cp O	 254 0
ret nz	 192
Id bc, 65535	 1 255 255
push be	 197

right
	

Id hl, (23296)	 42 0 91
call subroutine	 205 143* 125*
and (hl)	 166
cp O	 254 0
jr nz, left	 32 9
Id hl, (23296)	 42 0 91
inc l	 44
Id (23296),hl	 34 0 91
jr nz, right	 32 236

next byte

no change

left Id de, O
Id hl, (23296)
dec I
Id (23296),hl

17 0 0
42091
45
34 0 91

Operation
This routine `shades' an area of the screen bounded by a line of pixels on the
edge of the screen.

66 67

retrieve

subroutine

plot

reset

long jump

down

next pixel

restore

Id hl, (23296)	 42 0 91
push hl	 229
call subroutine	 205 143* 125*
or (hl)	 182
Id (hl),a	 119
pop hl	 225
Id a,h	 124
cp 175	 254 175
jr z, down	 40 44
Id a,e	 123

O	 254 0cp
jr nz, reset	 32 16
inch	 36
call subroutine	 205 143* 125*
and (hl)	 166

0	 254 0cp
jr nz, reset	 32 7
Id hl, (23296)	 42 0 91
inch	 36
push hl	 229
Id e,1	 30 1
Id hl, (23296)	 42 0 91
Id a,e	 123
cp 1	 254 1
jr nx, down	 32 15
inch	 36
call subroutine	 205 143* 125*
and (hl)	 166
cp 0	 254 0
jr z, down	 40 6
Id e, 0	 30 0
jr down	 24 2

jr right	 24 167

Id hl, (23296)	 42 0 91
Id a,h	 124

O	 254 0cp
jr z, next pixel	 40 40
Id a,d	 122
cp O	 254 0
jr nz, restore	 32 16
dec h	 37
call subroutine	 205 143* 125*
and (hl)	 166
cp 0	 254 0
jr nz, restore	 32 7
ld hl, (23296)	 42 0 91
dec h	 37

push hl
Id d,l
Id a,d
cp 1
jr nz, next pixel
Id hl, (23296)
dec h
call subroutine
and (hi)
cp O
jr z, next pixel
Id d, O
Id hl, (23296)	 42 0 91
Id a,l	 125
cp 0	 254 0
jr z, retrieve	 40 12
dec 1	 45
Id (23296),h1	 34 0 91
call subroutine	 205 143* 125*
and (hl)	 166
cp O	 254 0
jr z, plot	 40 129
pop hl	 225
Id (23296),h1	 34 0 91
Id a, 255	 62 255
cp h	 188
jr nz, long jump	 32 177
cp 1	 189
jr nz, long jump	 32 174
ret	 201

push be	 197
push de	 213
Id a, 175	 62 175
sub h	 148
Id h,a	 103
push hl	 229
and 7	 230 7
add a, 64	 198 64
Id c,a	 79
ld a,h	 124
rra	 203 31
rra	 203 31
rra	 203 31
and 31	 230 31
Id b, a	 71
and 24	 230 24

229
22 1
122
254 1
32 14
42091
37
205 143* 125*
166
254 0
40 2
22 0

68 69

87
124
230 192
95
97
125
203 31
203 31
203 31
230 31
111
123
128
146
95
22 O
229
213
225
41
41
41
41
41
209
25
209
123
230 7
71
62 8
144
71
62 1

135
16 253
203 31
209
193
201

A A A

^j

Id d,a
Id a,h
and 192
Id e,a
Id h,c
Id a,1
rra

rra

rra

and 31
Id 1,a
Id a,e
add a,b
sub d
Id e,a
Id d, 0
push hl
push de
pop hl
add hl,hl
add hl,hl
add hl,hl
add hl,hl
add hl,hl
pop de
add hl,de
pop de
Id a,e
and 7
1db,a
Ida,8
sub b
Id b,a
Id a,l

rotate	 add a,a
djnz rotate
rra

pop de
pop be
ret

How it works
This routine plots horizontal lines of adjacent pixels called `RUNS'
within areas bounded by illuminated pixels. Each RUN is remembered by
`stacking' the co-ordinates of the rightmost pixel of the RUN. Starting
from the specified co-ordinates, the routine fills in each RUN, noting the
positions of any unfilled RUNS above or below. On completing one RUN,

70

the last set of co-ordinates noted are retrieved and the corresponding RUN
is filled in. The process is repeated until there are no more unfilled RUNS.

Figure B2 illustrates the technique. The squares represent illuminated
pixels, x marks the starting position within the area to be shaded and *
marks the rightmost pixels of RUNS.

j jjjFAjj^
A 0 j

0 j7

*

j j
Figure B2. An illustration of the techn ique used for
filling a region. Grey squares are already illuminated
and define the region to be shaded. X is the starting
position, * are the starts of RUNS and O remain
unshaded.

The routine shades the horizontal line containing the starting position
and saves on the stack the positions of the starts of the RUNS in the lines
immediately above and below. It next shades the line above and then the
line below noting in the latter case that two more RUNS start on the
next line down and so on. Any position within the area to be shaded
may be selected as the starting position but note that the two pixels
marked with zeros are left untouched because they are separated from the
area being shaded.

The h register is loaded with the y co-ordinate specified, and the 1
register is loaded with the x co-ordinate. If the value of the y co-ordinate is
more than 175 the routine returns to BASIC. The `subroutine' is called
returning the address in memory of the bit (x,y). If this bit is `on' the
routine returns to BASIC.

The number 65535 is PUSHed onto the stack to mark the first value
saved. Later in the routine, if a number is retrieved from the stack, it is used
as a pair of co-ordinates. However, if the number is 65535, a return is made
to BASIC as the routine will have finished.

The h register is loaded with the y co-ordinate, and the 1 register is
loaded with the x co-ordinate. The `subroutine' is called, returning in hl the
address of the bit (x,y). If this bit is `on' a jump is made to `left'. Otherwise
the x co-ordinate is incremented, and a loop to `right' if x is not equal to 256.

71

j
j

*

*
jrzzj

*

*

*

*

Ô

At `left', de is set to zero. The d and e registers are to be used as
flags, d for down and e for up. The x co-ordinate is decremented. The
subroutine is called, and the point (x,y) is plotted. If the y co-ordinate
is 175 the routine jumps to `down'. If the `up flag' is set to one a jump is
made to `reset'. If the bit (x,y + 1) is `off' the values of x and y + 1 are saved
on the stack, and the `up flag' set to one.

At `reset', if the `up flag' is set to zero a jump is made to `down'. If
the bit (x,y + 1) is `on' the `up flag' is set to zero. At `down', if the y
co-ordinate is zero a jump is made to `next pixel'. If the `down flag' is set
to one a jump is made to `restore'. If the bit (x,y-1) is `off' the values of
x and y-1 are saved on the stack, and the `down flag' set to one.

At `restore', if the 'down flag' is set to zero a jump is made to
`next pixel'. If the bit (x,y-1) is `on' the `down flag' is set to zero. At
`next pixel', if the x co-ordinate is zero the routine jumps to `retrieve'. The
x co-ordinate is decremented, and if the new bit (x,y) is `off' a jump is made
to `plot'. At `retrieve', an x and y co-ordinate are removed from the stack.
If x and y both equal 255 then the routine returns to BASIC as the region
has been completely filled. Otherwise the routine loops back to `right'.

The subroutine has to calculate the address of the bit (x,y) in memory.
In BASIC this address would be:
16384 + INT (Z/8) + 256 x (Z-8 x INT (Z/8))
+ 32 x (64 x INT(Z/64) + INT(Z/8)-8 x INT(Z/64))

where Z = 175—Y
The bc and de register pairs are saved on the stack. The accumulator is

loaded with 175 and the Y co-ordinate is subtracted from this. The result is
copied back into the h register. hl is then saved on the stack. The left five bits of
the accumulator are set to zero, and 64 is added. The result is copied into
the c register. When multiplied by 256 this gives 16384 + 256 x (Z-8 x INT
(Z/8)). The accumulator is loaded with Z, and this is divided by eight, the
result being copied into the b register. This result is INT (Z/8). Setting the
rightmost three bits to zero produces the value 8 x INT (Z/64), this being
loaded into the d register.

The accumulator is loaded with Z, and the six rightmost bits are
set to zero, producing the value 64 x INT (Z/64). This is loaded into the e
register. The value in the c register is copied into h. The accumulator is
loaded with the x co-ordinate, this is divided by eight, and the result is
copied into 1.

The accumulator is then loaded with the value in e, and the contents
of b are added. The value in d is subtracted and the result loaded into de.
The hl register pair is saved on the stack, and then loaded with the value in
de. This is multiplied by 32, de is retrieved from the stack and added to
hl. Thus, hl now holds the address of the bit (x,y).

The accumulator is loaded with the original value of x. Setting the left
five bits to zero, produces the value x-8 x INT (x/8). The b register is
then loaded with eight minus the value of the accumulator, to be used as

72

a counter. The accumulator is set to one, and this is multiplied by two
b-1 times.

At this point a single bit should be set in the accumulator, which
corresponds to the bit (x,y) addressed by hl. de and bc are then retrieved
from the stack, and the subroutine then returns to the main routine.

Shape Tables

Length: 196

Number of Variables: 2
Check sum: 20278

Operation

This routine plots a shape of any size on the screen.

Variables
Name Length Location Comment
X start 1 23296 X co-ordinate of first pixel
Y start 1 23297 Y co-ordinate of first pixel

Call

RAND USR address

Error Checks

If A$ does not exist, has zero length, or does not contain any shape
information, the routine returns to BASIC immediately. This also happens
if Y start is more than 175.

Comments

This is a useful method of storing shapes in memory to be plotted at speed
on the screen.

The method for using this routine is:
(i) LET A$ = "shape information"
(ii) POKE 23296, X co-ordinate of first pixel
(iii) POKE 23297, Y co-ordinate of first pixel
(iv) RAND USR address

The shape information is a string of characters, which have the
following meanings:
"O "	 Plot point

decrease X co-ordinate
"6" decrease Y co-ordinate

increase Y co-ordinate
increase X co-ordinate

Any other characters are ignored.

73

The routine includes a `wrap-round' facility. ie if the X co-ordinate 	 ex de,hl	 235
moves off the left of the screen it appears on the right etc. 	 Id a, (23297)	 58 1 91

To change the routine to use a string other than A$, change the 65* to 	 cp 176	 254 176
the code of the upper case character of the name of the string. 	 ret ne	 208

Code Listing	
again	 Id hl, (23296)	 42 0 91Machine

Id a,b	 120
Label	 Assembly language	 Numbers to be entered 	 or c	 177

Id hl, (23627)	 42 75 92	 ret z	 200
next variable	 Id a, (hl)	 126	 dec be	 11

cp 128	 254 128	 Id a, (de)	 26
ret z	 200	 inc de	 19
bit 7,a	 203 127	 cp 48	 254 48
jr nz, for next	 32 23	 jr nz, not plot	 32 78
cp 96	 254 96	 push be	 197
jr nc, number	 48 11	 push de	 213
cp 65	 254 65*	 Id a, 175	 62 175
jr z, found	 40 35	 sub h	 148

Id h,a	 103string	 inc hl	 35
,e

inc
	 push hl	 229i	

and 7	 230 7nc l	
3
35
94	

add a,64	 198 64Id d, (hl)	 86
Id c,a	 79

add	 add hl,de	 25	 Id a,h	 124
jr increase	 24 5	 rra	 203 31

number	 inc hl	 35	 rra	 203 31
inc hl	 35	 rra	 203 31
inc hl	 35	 and 31	 230 31
inc hl	 35	 Id b,a	 71
inc hl	 35	 and 24	 230 24

increase	 inc hl	 35	 Id d,a	 87
jr next variable	 24 225	 Id a,h	 124

and 192	 230 192for next	 cp 224	 254 224	 Id e,a	 95jr c, next bit	 56 5	 Id h,c	 97
Id de, 18	 17 18 0	 Id a,l	 125
jr add	 24 236	

rra	 203 31
next bit	 bit 5,a	 203 111	 rra	 203 31

jr z, string	 40 228	 rra	 203 31
next byte	 inc hl	 35	 and 31	 230 31

bit 7,(h1)	 203 126	 Id l,a	 111
jr z, next byte	 40 251	

I
 a,e	 123

jr number	 24 228	 add a,b	 128
found	 inc hl	 35	 sub d	 146

Id c, (hl)	 78	 Id e,a	 95
inc hl	 35	 Id d, O	 22 0
Id b, (hl)	 70	 push hl	 229
inc hl	 35	 push de	 213

74
	

75

Variables
Name

upper y co-ord
lower y co-ord
right x co-ord

left x co-ord

horizontal scale
vertical scale

Length Location

1 23296
1 23297
1 23298

1 23299

1 23300
1 23301

Comment

y co-ordinate of top row
y co-ordinate of bottom row
x co-ordinate of rightmost
column
x co-ordinate of leftmost
column
magnification in x plane
magnification in y plane

77

rotate

here

not plot

down

up

right

save

pop hl	 225
add hl,h1	 41
add hl,hl	 41
add hl,hl	 41
add hl,hl	 41
add hl,hl	 41
pop de	 209
add hl,de	 25
pop de	 209
Id a,e	 123
and 7	 230 7
ld b,a	 71
Id a, 8	 62 8
sub b	 144
ld b,a	 71
Id a,1	 62 1
add a,a	 135
djnz rotate	 16 253
rra	 203 31
pop de	 209
pop be	 193
or (hl)	 182
Id (hl),a	 119

jr again	 24 165

cp 53	 254 53
jr nz, down	 32 1
dec 1	 45

cp 54	 254 54
jr nz, up	 32 8
dec h	 37
Id a,h	 124
cp 255	 254 255
jr nz, save	 32 19
Id h, 175	 38 175

cp 55	 254 55
jr nz, right	 32 8
inch	 36
ld a,h	 124
cp 176	 254 176
jr nz, save	 32 7
ld h, O	 38 O

cp 56	 254 56
jr nz, save	 32 1
inc I	 44

Id (23296),hl	 34 0 91
jr here	 24 215

How it works
The address of the string, A$ is found using an adaption of the first section
of the `Instr$' routine.

The length of the string is loaded into bc, and the address of the first
character of A$ is loaded into de. The accumulator is set to the value Y
start, and if this is more than 175 the routine returns to BASIC. The
h register is loaded with the Y co-ordinate, and 1 is loaded with the X
co-ordinate. If the value of the be register pair is zero the routine then
returns to BASIC, because the end of the string has been reached. be is
decremented, to indicate that another character has been operated on. The
next character is loaded into the accumulator, and de is incremented to
point to the following byte. If the accumulator does not hold 48 a jump is
made to `not plot'. The point (X,Y) is plotted using the `subroutine' from
the "Region Filling" routine. The routine then jumps back to `again'.

At `not plot', if the accumulator holds 53, the X co-ordinate is
decremented. At `down' if the accumulator does not hold 54, a jump is
made to `up'. The Y co-ordinate is decremented, and if this then holds —1
the Y co-ordinate is then set to 175.

At `up', if the accumulator does not hold 55 a jump is made to `right'.
The Y co-ordinate is incremented, and if it is 176 the Y co-ordinate is then
set to O. At `right', if the accumulator holds 56, the X co-ordinate is
incremented. At `save', the X and Y co-ordinates are POKEd into memory,
and the routine loops to `here'.

Screen Magnify and Copy

Length: 335
Number of Variables: 8
Check Sum: 33663

Operation
This routine copies a section of the display to another area on the screen,
magnifying the copy in the x or y planes.

76

add

remainder

221
62
221
216
221
216
151
221
200
221
200
42

33
175

190

190

190

190

0 91

0

0

7

4

5

91 off

next bit

new left co-ord	 1	 23302	 x co-ordinate of leftmost
column of area to be copied to

new lower co-ord 1	 23303	 y co-ordinate to bottom row of
area to be copied to

Call

RAND USR address
Error Checks

The routine returns to BASIC immediately if any of the following conditions
are true:

(i) horizontal scale = O
(ii) vertical scale = O
(iii) upper co-ord greater than 175
(iv) new lower co-ord greater than 175
(v) lower y co-ord greater than upper y co-ord
(vi) left x co-ord greater than right x co-ord

However, to keep the routine short, there is no check that ensures that
the copied section fits on the screen. If it does not, the routine may `crash'.
The routine also requires a large amount of spare RAM, and if this is not
available, the routine may `crash'.

Comments

This routine is not relocatable, due to the existence of a Plot/Point'
subroutine. It is located at address 65033, and hence can only be used on
machines with 48K of RAM. The routine can be re-positioned in memory,
using the procedure given for the `Renumber' routine. However, if large
areas to the screen are to be copied, then a lot of spare RAM is needed, and
so the start address should be as high as possible.

If the copied area of the display is to be the same size as the original,
the scales should be set to one, to double the size load the scales with two, to
triple the size load the scales with three etc.

Machine Code Listing

Label	 Assembly language
	

Numbers to be entered

Id ix, 23296
Id a, 175
cp (ix + O)
ret c
cp (ix + 7)
ret c
sub a
cp (ix + 4)
ret z
cp (ix + 5)
ret z
Id hl, (23296)

Id b, 1
Id a,l
sub h
ret c
Id (23298),a
Id e,a
Id hl, (23298)
Id c,l
Id a,l
sub h
ret c
Id (23298),a
push bc
Id 1,a
Id h, O
inc hl
push hl
pop bc
inc e

dec e
jr z, remainder
add hl,bc
jr add

Id a,l
and 15
Id b,a
pop hl
Id c,l
jr nz, save

Id b, 16

push hl
call subroutine
and (hl)
jr z, off
Id a, 1

pop hl
rra
rl e
rid
Id a,1
cp (ix + 3)
jr z, next row
dec 1

djnz save
push de
jr full

69
125
148
216
50091
95
42291
77
125
148
216
50291
197
1 1 1
38 O
3 5
229
193
28

29
40 3
9
24 250

125
230 15
71
225
77
32 2

6 16

229
205 13* 255*
166
40 2
62 1

225
203 31
203 19
203 18
125
221 190 3
40 6
45

16 231
213
24 226

full

save

78
	 79

repeat

continue

next row	 ld 1,c	 105
Id a,h	 124
cp (ix + 1)	 221 190 1
jr z, copy	 40 3
dec h	 37
jr next bit	 24 241

copy	 push de	 213
Id b, 0	 6 0
Id h,b	 96
ld l,b	 104

reset	 Id (23306),hl	 34 10 91
Id a,b	 120
ora	 183
jr nz, retrieve	 32 3
pop de	 209
ld b, 16	 6 16

retrieve	 sub a	 151
dec b	 5
rr d	 203 26
rr e	 203 27
rl a	 203 23
push de	 213
push be	 197
push of	 245
Id h,1	 38 1

loop	 ld 1,1	 46 1

preserve	 Id (23304),hl	 34 8 91
Id a,(23307)	 58 11 91
ld hl, 0	 33 0 0
Id de, (23301)	 237 91 5 91
ld d,1	 85

multiply	 or a	 183
jr z, calculate	 40 6
add hl,de	 25
deca	 61
jr multiply	 24 249

long jump	 jr reset	 24 208

calculate	 Id a, (23303)	 58 7 91
add a,l	 133
ld hl, (23304)	 42 8 91
add a,l	 133
deca	 61
push of	 245
ld a, (23306)	 58 10 91
ld hl, 0	 33 0 0
1d de, (23300)	 237 91 4 91

Id d, I	 85
ora	 183
jr z, continue	 40 4
add hl,de	 25
deca	 61
jr repeat	 24 249
Id a, (23302)	 58 6 91
add a,1	 133
Id hl, (23305)	 42 9 91
add a, 1	 133
deca	 61
Id l,a	 l I 1
pop of	 241
ld h,a	 103
pop of	 241
push of	 245
ora	 183
jr nz, plot	 32 7
call subroutine	 205 13* 255*
cpl	 47
and (h1)	 166
jr Poke	 24 4
call subroutine	 205 13* 255*
or (hl)	 182
Id (h1),a	 119
Id hl, (23304)	 42 8 91
inc 1	 44
Id a, (23301)	 58 5 91
inca	 60
cp l	 189
jr nz, preserve	 32 165
inch	 36
Id a, (23300)	 58 4 91
inca	 60
cp h	 188
jr nz, loop	 32 155
pop of	 241
pop be	 193
pop de	 209
Id hl, (23306)	 42 10 91
inc 1	 44
Id a, (23298)	 58 2 91
inca	 60
cp l	 189
jr nz, long jump	 32 164
ld1,0	 46 0
inch	 36

Plot

Poke

8180

Id a, (23296)
inc a
cp h
jr nz, long jump
ret

subroutine push be
push de
Id a, 175
sub h
Id h,a
push hl
and 7
add a, 64
Id c,a
Id a,h
rra

rra
rra
and 31
Id b,a
and 24
Id d,a
Id a,h
and 192
Id e,a
Id h, c
Id a,l
rra
rra

rra
and 31
Id 1,a
Id a,e
add a,b
sub d
Id e,a
Id d, O
push hl
push de
pop hl
add hl,hl
add hl,hl
add hl,hl
add hl,hl
add hl,hl
pop de
add hl,de

58091
60
188
32 154
201

197
213
62 175
148
103
229
230 7
198 64
79
124
203 31
203 31
203 31
230 31
71
230 24
87
124
230 192
95
97
125
203 31
203 31
203 31
230 31
111
123
128
146
95
22 O
229
213
225
41
41
41
41
41
209
25

82

pop de	 209
Id a,e	 123
and 7	 230 7
ld b,a	 71
Id a,8	 62 8
sub b	 144
Id b,a	 71
Id a, 1	 62 1

rotate	 add a,a	 135
djnz rotate	 16 253
rra	 203 31
pop de	 209
pop be	 193
ret	 201

How it works

ix is loaded with the address of the printer buffer, for use as a pointer to
the variables. If the upper y co-ordinate or the new lower y co-ordinate is
more than 175 the routine returns to BASIC. If the horizontal scale or the
vertical scale is zero a return is made to BASIC.

The h register is loaded with the lower y co-ordinate, and the 1 register is
loaded with the upper y co-ordinate. The I register is copied into both the b
register and the accumulator. The h register is subtracted from the
accumulator, and the routine returns to BASIC, if the result is negative.

The value of the accumulator is then POKEd into location 23298, for
use as a counter. The be register pair is then saved on the stack.

The hl register is loaded with the value in the accumulator, incremented,
and copied into the be register. be is added to hl, e times, the resulting
value in hl being the number of pixels on the screen to be copied. The
accumulator is loaded with the value in the l register, and the four leftmost
bits are set to zero. The result is copied into the b register, to be used as
a counter.

The hl register pair is retrieved from the stack, and the I register is
copied into the c register. If the b register holds zero, it is loaded with
sixteen, this being the number of bits in a register pair. The `subroutine'
is then called, and the accumulator is loaded with the value POINT (1,h).
The de register pair is rotated to the left and the value of the accumulator
is loaded into the rightmost bit of the e register.

If the 1 register equals the left x co-ordinate the routine jumps to `next
row'. Otherwise the I register is decremented, followed by the b register. If
the b register does not hold zero, the routine loops to `save' to feed the next
bit into the de register pair. If the b register does hold zero, the de règister
pair is pushed on to the stack and a jump is made to `full'.

At `next row' the l register is loaded with the right x co-ordinate, and
the accumulator is loaded with the value in the h register. If the value of the
accumulator equals the lower y co-ordinate, a jump is made to `copy'
because the last pixel to be copied has been fed into de. Otherwise, the h

83

register is decremented to point to the next row, and the routine loops to
`next bit'.

At `copy', de is pushed on to the stack, and the b, h and 1 registers are all
set to zero for use as counters. The hl register pair is POKEd into addresses
23306/7, so that hl can be used as a counter for further loops without using
the stack. If the b register holds zero, de is retrieved from the stack and the
b register is reset to sixteen, indicating the number of pixels stored in de.
The b register is decremented to indicate that a bit of information is to be
removed from de. The rightmost bit of the e register is loaded into the
accumulator, and the de register pair is rotated to the right. de, bc and af
are all pushed on to the stack, while some calculations are performed.

The h and I registers, are both loaded with one, for use as counters, and
hl is POKEd into addresses 23304/5. The accumulator is loaded with the
value of the byte at address 23307, this being one of the counters saved
earlier. The de register pair is loaded with the vertical scale. This is then
multiplied by the value in the accumulator, and the result fed into hl. This
is added to the new lower y co-ordinate, in the accumulator. The byte at
address 23304 is then added to the accumulator, and the result is decremented.

The accumulator now holds the y co-ordinate of the next pixel to be
plotted. This is saved on the stack, whilst the x co-ordinate is calculated by a
very similar process. The x co-ordinate, when calculated, is loaded into the
I register. The y co-ordinate is retrieved from the stack and loaded into the
h register. The accumulator is set to the last value held on the stack. If this
is one, then the point (x,y) should be plotted, otherwise it should be
`unplotted'. The subroutine is called, and the appropriate action taken.

The hl register pair is loaded with the loop counters, stored at addresses
23304/5. The 1 register is incremented and if this does not hold the value
(1 + vertical scale) the routine loops to `preserve'. The h register is incremented
and if this does not hold the value (1 + horizontal scale) a jump is made to
`loop'.

The af, bc and de register pairs are retrieved from the stack and the hl
register pair is loaded with the second set of loop counters, which are stored
at addresses 23306/7. The I register is incremented, and a jump is made to
`reset' if the result does not equal (right x co-ord—left x co-ord + 1). The
1 register is set to zero, this being the original value of the loop counter.
The h register is then incremented, and the routine loops to `reset' if the
result does not equal (upper y co-ord—lower y co-ord+ 1). The routine
returns to BASIC.

The `subroutine' is identical to that used in the `Region Fill' routine.

84

7. ROUTINES TO MANIPULATE PROGRAMS

Delete block of program

Length: 42
Number of Variables: 2
Check sum: 5977

Operation

This routine deletes blocks of BASIC program between two lines specified
by the user.

Variables

Name
	

Length
	

Location
	

Comment
start line no	 2
	

23296
	

First line to be deleted
end line no	 2
	

23298
	

Final line to be deleted

Call

RAND USR address

Error Checks

If any of the following errors occur then the routine stops without deleting
any of the BASIC program:
(i) Final line number is less than first line number;
(ii) there is no BASIC program between the two given lines;
(iii) either or both of the specified line numbers are zero.

Comments

This routine is quite slow to delete a large block of program lines but none-
theless it is much quicker to use it than to delete the lines by hand. Do not
enter line numbers greater than 9999.

Machine Code Listing

Label	 Assembly language
	

Numbers to be entered

Id hl, (23296)
	

42 0 91
Id de, (23298)
	

237 91 2 91
Id a,h
	

124
or 1
	

181
ret z	 200
Id a,d
	

122
or e	 179
ret z	 200
push de	 213
call 6510
	

205 110 25
ex (sp), hl
	

227

85

inc hl	 35
call 6510	 205 110 25
pop de	 209
and a	 167
sbc hl,de	 237 82
ret z	 200
ret c	 216
ex de,hl	 235

next chr:
	 Id a,d	 122

ore	 179
ret z	 200
push de	 213
push hl	 229
call 4120	 205 24 16
pop hl	 225
pop de	 209
dec de	 27
jr next chr	 24 243

How it works
The hl and de register pairs are loaded with the start and end line numbers
respectively. The values are checked and if either or both are zero, the
routine returns to BASIC.

The ROM routine at address 6510 is then called and it returns the
address of the first line. It is then called again to find the address of the
character after the "ENTER" in the final line. The hl register pair is set
to the difference in the two addresses, and if this is zero or negative, the
routine returns to BASIC.

The contents of the hl register pair are copied into de to be used as a
counter. If the counter is zero the routine has finished, if not then the ROM
routine at address 4120 is called which deletes one character. The routine
then loops back to `next chr'.

Token Swap

Length: 46
Number of Variables: 2
Check sum: 5000

Operation
Changes every occurence of a specified character in a BASIC program to
another specified character. eg all PRINT statements could be changed to
LPRINTS.

86

Variables
Name Length Location Comment
chr old 1 23296 character to be replaced
chr new 1 23297 character to be entered
Call
RAND USR address

Error Checks

characters have codes less than 32, the routine returns to BASIC.
If there is no BASIC program in memory or if either of the specified

Comments

This routine is very fast but obviously, the longer the BASIC program, the
longer it takes to run.

Machine Code Listing
Label	 Assembly language	 Numbers to be entered

Id, bc, (23296)	 237 75 0 91
Id a,31	 62 31
cp b	 184
ret nc	 208
cpc	 185
ret nc	 208
Id hl, (23635)	 42 83 92

next chr:	 inc hl	 35
inc hl	 35
inc hl	 35

check:	 Id de, (23627)	 237 91 75 92
and a	 167
sbc hl,de	 237 82
ret nc	 208
add hl,de	 25
inc hl	 35
Id a, (hl)	 126
inc hl	 35
cp 13	 254 13
jr z, next chr	 40 237
cp 14	 254 14
jr nz, compare	 32 3
inc hl	 35
jr next chr	 24 230
dec hl	 43compare:
cpc	 185
jr nz, check	 32 229
ld(hl),b	 112
jr check	 24 226

87

How it works
The b and c registers are loaded with the new and old characters respectively.
If either character has a code less than 32 then the routine returns to BASIC.

The hl register pair is loaded with the address of the start of the basic
program. The hl pair is then increased and compared with the address of the
variables area. If hl is not less than the address of the variables the routine
returns to BASIC.

The hl pair is incremented to point to the next character. The code of
this character is loaded into the accumulator, and hl is incremented again. If
the value of the accumulator is 13 or 14 (ENTER or NUMBER) the routine
jumps back to next chr and hl is increased to point to the next character. If
the accumulator does not hold 13 or 14, the value stored is compared with
`chr old'. If a match is found this character is replaced by `chr new'.

The routine then jumps back to check for the end of the program.

REM Kill

Length: 132
Number of Variables: O
Check sum: 13809

Operation
This routine deletes all `REM' statements in a BASIC program in memory.

search
Call
RAND USR address

Error Checks	 enter found
If there is no BASIC program in memory the routine will return without
doing anything.

Comments
The ROM routine which is used to delete characters is not very fast and so
this routine may take some time to run.

not enter
Machine Code Listing
Label	 Assembly language

	
Numbers to be entered

42
24

229
35
35
78
35
70

83
31

92

not number

inc hl
Id a,(hl)
cp 33
jr c, next chr
cp 234
jr nz, search
inc bc
inc bc
inc bc
inc bc
pop hl
push bc
call 4120
pop bc
dec bc
Id a,b
or c
jr nz, delete line
Id de, (23627)
and a
sbc hl,de
ret nc
add hl,de
jr next line

inc hl
Id a, (hl)
cp 13
jr nz, not enter
pop hl
add hl,bc
inc hl
inc hl
inc hl
inc hl
jr check

cp 14
jr nz, not number
inc hl
inc hl
inc hl
inc hl
inc hl
jr search

cp 33
jr c, search
cp 34

next chr

delete line

check

next line

Id hl, (23635)
jr check

push hl
inc hl
inc hl
Id c, (hl)
inc hl
Id b, (hl)

35
126
254 33
56 250
254 234
32 26
3
3
3
3
225
197
205 24 16
193
11
120
177
32 246

237 91 75 92
167
237 82
208
25
24 214

35
126
254 13
32 8
225
9
35
35
35
35
24 231

254 14
32 7
35
35
35
35
35
24 231

254 33
56 227
254 34

88
	

89

Comment

line at which REM is to be
inserted
number of characters after
REM
code of characters after
REM

Variables
Name

line number
Length

2
Location

23296

23298

23300

number char. 2

char. code	 1

find quote

not quote

find enter

delete chr

jr nz, not quote	 32 8

inc hl	 35
Id a, (hl)	 126
cp 34	 254 34
jr nz, find quote	 32 250
jr search	 24 215

cp 58	 254 58
jr nz, search	 32 211
Id d,h	 84
Id e, l	 93

inc hl	 35
Id a, (hl)	 126
cp 13	 254 13
jr z, enter found	 40 209
cp 33	 254 33
jr c, find enter	 56 246
cp 234	 254 234
jr nz, not quote	 32 236
Id h,d	 98
Id l,e	 107

push be	 197
call 4120	 205 24 16

pop be	 193
dec be	 11
Id a, (hl)	 126
cp 13	 254 13
jr nz, delete chr	 32 245
pop hl	 225
inc hl	 35
inc hl	 35
Id (hl),c	 113
inc hl	 35
Id (hl),b	 112
dec hl	 43
dec hl	 43
dec hl	 43
jr check	 24 160

character has a code less than 33, indicating that it is a space or control
character, the routine jumps back to repeat this section again. If the
character encountered is not the REM token a jump is made to `search'.

If a REM has been found the bc register is increased by four so that it
can be used as a counter, and hl is removed from the top of the stack.
Then bc characters are deleted at address hl using the ROM routine at
address 4120. The routine then `falls through' to the `check' routine again.

If a jump is made to the `search' routine hl is incremented to point
to the next character and this is loaded into the accumulator. If this is an
ENTER character hl is restored from the stack, increased to point to the
start of the next line, and a jump is made to `check'.

If the accumulator holds the NUMBER character (14) hl is increased to
point to the first character after the stored number and the search process is
repeated.

A check is then made for characters whose codes are less than 33, and
if one is found a jump is made back to `search'. If a quote character (34) is
found, the routine loops until a second quote is found and then the search is
continued. If the character found is not a colon, indicating a multi-statement
line, the search is repeated. hl is then copied into de to save the address of
the colon, and then hl is incremented to point to the next character. If this
character is an ENTER a jump is made to `enterfound', otherwise if it is a
control character or space the routine loops back to `find enter'.

If the character is not a REM token a jump is made back to `not quote'.
If a REM token is found hl is loaded with the address of the last colon
encountered, and then all the characters from hl to the next ENTER token
are deleted. The pointers for the line are corrected, hl is set to the start of
the line and a jump is made back to `check'.

REM Create
Length: 85
Number of Variables: 3
Check sum: 9526

Operation

This routine creates a REM statement at a specified line containing a given
number of characters. The character is chosen by the user.

How it works
The hl register pair is loaded with the address of the start of the BASIC
program area, and a jump is made to the routine which checks for the end
of the program area. If the end has been reached a return to BASIC is made.

The routine jumps to `next line'. This section saves the address in hl on
the stack for later use, and then loads bc with the length of the BASIC line
that has been encountered. The `next chr' routine increments the address in
hl and loads the accumulator with the character stored at that address. If this

90 91

Call	 jr z, insert REM	 40 11
RAND USR address	 Id a, (23300)	 58 4 91

call 3976	 205 136 15
Error Checks	 inc hl	 35
If the line number given is zero, more than 9999, or a line with the same	 pop bc	 193
number already exists the routine returns to BASIC. 	 dec bc	 11

jr next chr	 24 240
Comments	 insert REM	 pop bc	 193
This routine does not check that enough memory is free for the new line to 	 Id a, 234	 62 234
be inserted. Therefore, this should be done before running this routine, by 	 call 3976	 205 136 15
calling the `Memory Left' routine elsewhere in this book.	 inc hl	 35

The characters to be entered after the REM should preferably have 	 pop bc	 193
codes more than 31 as the control characters (0-31) may confuse the LIST	 inc bc	 3

routine in the ROM.	 inc bc	 3

The ROM routine which is called to insert characters is fairly slow, so	 Id a,b	 120

this routine can take a long time.	
push bc	 197

The REM statement created using this routine, can be used to store 	
call 3976	 205 136 15

machine code or data which has to be POKEd into place.	
pop bc	 193
inc hl	 35
Id a,c	 121

Machine Code Listing	 call 3976	 205 136 15
Label	 Assembly language	 Numbers to be entered 	 inc hl	 35

Id hl, (23296)	 42 0 91
ld, a,h	 124
or 	 181
ret z	 200
Id de, 10000	 17 16 39
and a	 167
sbc hl,de	 237 82
ret nc	 208
add hl,de	 25
push hl	 229
call6510	 205 110 25
jr nz, create	 32 2
pop hl	 225
ret	 201

Id bc, (23298)	 237 75 2 91
push be	 197
push be	 197
Id a, 13	 62 13
call 3976	 205 136 15
inc hl	 35
pop be	 193

push bc
	 197

Id a,b
	

120
or c
	 177

pop be	 193
Id a,c	 121
push be	 197
call 3976	 205 136 15
pop be	 193
inc hl	 35
Id a,b	 120
jp 3976	 195 136 15

How it works

The hl register pair is loaded with the specified line number. This is
compared with zero, and if a match is found the routine returns to BASIC.
Also if hl contains a number longer than 9999 (the highest possible line
number), a return is made to BASIC.

A ROM routine is called which returns in hl the address of the line
whose number was previously in hl. If the zero flag is set, a line already
exists there, and so the routine returns to BASIC.

If the zero flag is not set a jump is made to `create'. bc is loaded with
the number of characters to be inserted after the `REM' and this number is
saved on the stack. The accumulator is then loaded with 13, which is the
code of the ENTER character. The ROM routine at address 3976 is then
called to insert the ENTER character. The be register is retrieved from the
stack. After re-saving be on the stack, be is tested to see if any more
characters have to be inserted. If not, a jump is made to "insert REM". If

create

next chr

92 93

Machine Code Listing

Label	 Assembly language	 Numbers to be entered

ld hl, (23635)

next line	 inc hl
inc hl

check	 Id de, (23627)
and a
sbc hl,de
ret nc
add hl,de

push hl
Id c, (hl)
inc hl
ld b, (hl)

length

42

35
35

237
167
237
208
25

229
78
35
70

83

91

82

92

75 92

another character has to be inserted, the accumulator is loaded with the	 next byte	 inc hl	 35
specified code and the ROM routine at 3976 is used to insert it. The counter 	 load	 Id a, (hl)	 126
(bc) is decremented and the routine loops back to test if bc is zero. Once the 	 cp 13	 254 13
routine reaches "insert REM", a REM token is inserted using the same 	 jr nz, number	 32 8
ROM routine. bc is then loaded with the length of the new line, and the 	 restore	 pop hl	 225
pointers for that line are created. The line number is then removed from the 	 Id (hl),c	 113
stack and this is finally inserted before returning to BASIC.	 inc hl	 35

Compact Program	
ld
add

hl,	 912
P	 g	 add hl,bc	 9

inc hl	 35
Length: 71	 jr next line	 24 227
Number of Variables: O	 number	 cp 14	 254 14
Check sum: 7158	 jr nz, quote	 32 7

inc hl	 35
Operation	 inc hl	 35
This routine deletes all unnecessary control characters and spaces in a	 inc hl	 35
BASIC program, thus increasing the amount of spare RAM available. 	 inc hl	 35

inc hl	 35
jr next byte	 24 231

RAND USR address 	 quote	 cp 34	 254 34
jr nz, control	 32 12

Error Checks	 find quote	 inc hl	 35
If there is no BASIC program in memory the routine returns to BASIC 	 Id a, (hl)	 126
immediately.	 cp 34	 254 34

jr z, next byte	 40 221
Comments	 cp 13	 254 13
This routine assumes that all REM statements have already been removed 	 jr z, restore	 40 223
from the BASIC program. However, if this is not so, the computer will not 	 jr find quote	 24 244
`crash'. The time taken for the routine to finish is proportional to the length 	 control	 cp 33	 254 33
of the BASIC program in memory.	 jr nc, next byte	 48 211

push be	 197
call 4120	 205 24 16
pop be	 193
dec be	 11
jr load	 24 204

How it works
The hl register pair is loaded with the address of the BASIC program. hl is
then incremented twice, so that it points to the two bytes holding the length
of the next line. The de register pair is loaded with the address of the
variables area. If hl is not less than de the routine returns to BASIC because
the end of the program area has been reached.

The address in hl is saved on the stack, bc is loaded with the length of
the present line and hl is incremented to point to the next byte in the line.
The byte at hl is then loaded into the accumulator. If the accumulator does
not hold thirteen a jump is made to `number'.

94

Call

95

To reach `restore' the end of the present line must have been found.
The address of the line `pointers' is loaded from the stack into hl, and
the present length inserted. The line length is added to hl, hl is incremented
and the routine loops back to `next line'.

If the routine reaches `number' the accumulator is checked to see if it
holds the NUMBER character (14). If so, hl is increased by five so that the
following number is not changed, and a jump is made to `next byte'.

If the accumulator does not hold the code for a quote character the
routine jumps to `control'. If a quote has been found the routine loops until
the end of the line is reached, or another quote. In the former case a
jump is made to `restore', in the latter case the jump is to `next byte'.

At `control' the character is checked to see if it has a code less than
thirty-three. If not the routine loops to `next byte'.

If a space or control character has been found the ROM routine at
address 4120 is called to delete it. The line length, which is held in bc, is
decremented and a jump is made to `load'.

Load Machine Code into Data Statements

Length: 179
Number of Variables: 2
Check sum: 19181

Operation
This routine produces a DATA statement at line one in a BASIC program
and then fills it with data PEEKed from memory.

Variables
Name Length Location Comment

data start 2 23296 address to be copied from

data length 2 23298 number of bytes to copy

Call
RAND USR address

Error Checks
If the number of bytes to be copied is zero or there is already a line one the
routine returns to BASIC immediately. The routine does not check that
there is enough memory available for the new line, and so this must be done
manually.

The routine requires ten bytes per byte of data, plus five for line
numbers, pointers, etc. However, the ROM routine used also uses a large
workspace, so always take this into account. If there is not enough memory
available, the line pointers will not be set correctly and the BASIC listing
will be corrupted.

96

Comments

The time taken by this routine is proportional to the length of memory to be
copied.

Machine Code Listing
Label	 Assembly language	 Numbers to be entered

Id de, (23296)
	

237 91 0 91
Id bc, (23298)
	

237 75 2 91
Id a,b
	

120
or c	 177
ret z	 200
Id hl, (23635)	 42 83 92
Id a, (hl)
	

126
cp O
	

254 0
jr nz, continue	 32 6
inc hl
	

35
Id a, (hl)
	

126
cp 1
	

254 1
ret z	 200
dec hl
	

43
continue	 push hl

	
229

push bc	 197
push de	 213
sub a	 151
call 3976
	

205 136 15
ex de,h1
	

235
Id a, 1
	

62 1
call 3976
	

205 136 15
ex de,hl
	

235
call 3976
	

205 136 15
ex de,hl
	

235
call 3976
	

205 136 15
ex de,hl
	

235
Id a, 228
	

62 228
call 3976
	

205 136 15
ex de,h1
	

235
pop de	 209
Id a, (de)	 26
push de	 213
ld c,47	 14 47
inc c	 12
1d b, 100
	

6 100
sub b
	

144
jr nc, hundreds	 48 250
add a,b
	

128
Id b,a	 71

97

next byte

hundreds

enter

pointers

end?

Id a,c	 121
push be	 197
call 3976	 205 136 15
ex de,hl	 235
pop be	 193
Id a,b	 120
Id c,47	 14 47

inc c	 12
Id b,10	 6 10
sub b	 144
jr nc, tens	 48 250
add a,b	 128
Id b,a	 71
ld a,c	 121
push be	 197
call 3976	 205 136 15
pop be	 193
ex de,hl	 235
Id a,b	 120
add a,48	 198 48
call 3976	 205 136 15
ex de,hl	 235
Id a,14	 62 14
ldb,6	 6 6

push be	 197
call 3976	 205 136 15
pop be	 193
ex de,hl	 235
sub a	 151
djnz next zero	 16 247
pop de	 209
push hl	 229
dec hl	 43
dec hl	 43
dec hl	 43
Id a, (de)	 26
Id (hl),a	 119
pop hl	 225
inc de	 19
pop be	 193
dec be	 11
Id a,b	 120
or c	 177
jr z, enter	 40 10
push be	 197
push de	 213
Ida,44	 62 44

98

call 3976	 205 136 15
ex de, hl	 235
jr next byte	 24 173
Id a,13	 62 13
call 3976	 205 136 15
pop hl	 225
ldbc,0	 1 0 0
inc hl	 35
inc hl	 35
Id d,h	 84
Id e,l	 93
inc hl	 35
inc hl	 35
inc be	 3
Id a, (hl)	 126
cp 14	 254 14
jr nz, end?	 32 12
inc be	 3
inc be	 3
inc be	 3
inc be	 3
inc be	 3
inc hl	 35
inc hl	 35
inc hl	 35
inc hl	 35
inc hl	 35
jr pointers	 24 237
cp 13	 254 13
jr nz pointers	 32 233
Id a,c	 121
Id (de),a	 18
inc de	 19
Id a,b	 120
Id (de),a	 18
ret	 201

99

How it works

The de register pair is loaded with the address of the bytes to be copied,
and the bc register pair is loaded with the number of bytes to be copied. If
bc holds zero the routine returns to BASIC immediately.

The hl register pair is loaded with the address of the BASIC program.
The accumulator is loaded with the byte stored at the address in hl. This
is the high byte of the line number. If this does not hold zero, line one does
not already exist and so the routine jumps to `continue'. If the high byte
does hold zero, the accumulator is loaded with the low byte. If this is set
to one, line one already exists, and so the routine returns to BASIC.

The address of the high byte of the line number is saved on the stack.
The number of bytes to be copied is saved, followed by the address of the data.

The accumulator is then loaded with zero—the high byte of the new line
number. Calling the ROM routine at address 3976 then inserts the character,
held in the accumulator, at the address stored in hl. hl is set to the value held
before this operation. The accumulator is loaded with one, and this is
inserted three times. The first one is the low byte of the line number, the
next two being the line pointer. The accumulator is then loaded with the
code of the `DATA' token and this is inserted.

The address of the next byte of data is retrieved from the stack and
loaded into de. The accumulator is loaded with this byte, and de is stacked
again. The c register is loaded with one less than the code for the character
"O". The c register is incremented and the b register is loaded with 100.
The b register is subtracted from the accumulator and if the result is not
negative the routine loops back to `hundreds'.

The b register is added once to the accumulator so that the accumulator
holds a positive value. This value is then loaded into the b register. The
accumulator is loaded with the contents of c, and be is saved on the stack.
The ROM routine at address 3976 then inserts the character, held in the
accumulator, at the address stored in hl. The be register pair is retrieved
from the stack and the accumulator is loaded with the value of the b register.
The above process is then repeated for b = 10. The accumulator is then
increased by 48 and the resulting character is inserted.

The above routine has inserted the decimal value, of the byte of data
encountered, into the DATA statement. The binary representation must
now be inserted. This is marked by the NUMBER token, chr 14, which is
entered first, followed by five zeros. The value of the byte being copied
is POKEd to replace the third zero. de is then incremented to point to the
next byte of data. The number of bytes to be copied is copied from the stack
into bc, and this is decremented. If the result is zero a jump is made to
`enter', otherwise the be and de register pairs are re-stacked, a comma is
inserted in the DATA statement, and the routine loops to `next byte'.

At `enter' an ENTER token is inserted to mark the end of the DATA
statement. hl is loaded with the address of the start of the line, and be is
set to zero. hl is increased to point to the low byte of the line pointer, and
this new address is copied into de. hl is incremented to point to the high
byte of the line pointer. hl and be are then incremented, and the accumulator
is loaded with the character at the address stored in hl.

If the accumulator holds 14, a number has been found and so both hl
and be are increased by five to point to the first character after the number,
the routine then looping to `pointers'.

If the accumulator does not hold 14, and it does not hold 13 a jump is
made back to `pointers'.

To reach this stage the ENTER token marking the end of the line must
have been encountered. be now holds the line length and so this is POKEd
into the line pointer, the address of which is stored in de.

The routine then returns to BASIC.

100

Convert Lower Case to Upper Case

Length: 41
Number of Variables: O
Check sum: 4683

Operation
This routine converts all lower
upper case or vice versa.

Call
RAND USR address

Error Checks

If there is no BASIC program in memory the routine returns to BASIC
immediately.

Comments

To change this routine so that it converts from upper case to lower case
change the numbers marked as below:

96* to 64
90** to 122

Machine Code Listing
Label	 Assembly language	 Numbers to be entered

Id hl, (23635)
	

42 83 92
Id de, (23627)
	

237 91 75 92
jump	 inc hl

	
35

inc hl
	

35
inc hl
	

35
inc hl
	

35
changed	 inc hl

	
35

next byte	 and a	 167
sbc hl,de	 237 82
ret ne	 208
add hl,de	 25
Id a, (hl)
	

126
cp 13
	

254 13
jr z, jump	 40 241
cp 14
	

254 14
inc hl
	

35
jr z, jump	 40 236
sub 96
	

214 96*
jr c, next byte	 56 237
sub 26
	

214 26

101

case characters in a BASIC program to

jr nc, next byte
	 48 233

add a,90
	

198 90**
dec hl
	

43
Id (hl), a
	 119

jr changed
	

24 226

How it works
The hl register pair is loaded with the address of the BASIC program and
de is loaded with the address of the variables area. hl is increased to jump
over the line number/pointers. If hl is not less than de, the routine returns
to BASIC, as the end of the program has been reached.

The accumulator is loaded with the byte stored at hl. If this byte is an
ENTER character the routine loops back to `jump'. If the byte is the
NUMBER token, the routine also loops back to `jump', having already
incremented hl. Thus the five bytes after the character 14 are avoided.

Ninety six is subtracted from the accumulator. If the result is negative
the routine jumps to `next byte' because the character cannot be a lower
case letter. Twenty six is then subtracted from the accumulator. If the
result is not negative a jump is made to `next byte' as the character has a
code too high to be a lower case letter. Ninety is then added to the
accumulator to give the code of the corresponding upper case letter. hl is
decremented to point to the character that is to be replaced. This address
is POKEd with the value in the accumulator and a jump is made to `changed'.

102

8. TOOLKIT ROUTINES

Renumber

Length: 382
Number of Variables: 2
Check sum: 41423

Operation

This routine renumbers a BASIC program including any GOTO, GOSUBs
etc.

Variables

Name

first line no

step

Length	 Location

2	 23296

2	 23298

Comment

The number of the first line
when RUN
The difference between
consecutive line numbers.

Call

RAND USR address

Error Checks

If the number of the first line is zero, or the step is zero the routine returns
to BASIC immediately. If there is no BASIC program in RAM the routine
returns to BASIC. Any calculated line numbers (eg GOTO 7*A); numbers
including decimal points (eg GOTO 7.8); numbers less than zero (eg
GOTO-1) or numbers more than 9999 (eg GOTO 20170) are ignored. If
the step is too large, line numbers may be repeated and the program
corrupted. The routine increases the length of the BASIC program in
RAM so a check should always be made that there is some spare RAM.

Comments

The time taken by this routine is proportional to the length of the BASIC
program in RAM.

The routine is not relocatable and should normally be entered at
memory location 32218. The position can be changed by following this
procedure:
(i) Let X = new address —32218
(ii) Let H = INT (x/256)

Let L = x — 256*h
(iii) For every pair of numbers in the listing marked `*'

Let LI = L + the first number
Let HI = H + the second number

103

next digit

find next

continue

found

compare

calculate

If LI is more than 255 Let HI = HI + 1
let LI = LI-256

Replace the pair of numbers by LI and HI.

Machine Code Listing
Label	 Assembly language

	 Numbers to be entered

Id hl, (23296)	 42 0 91
Id a, h	 124
or L	 181
ret z	 200
Id hl, (23298)	 42 2 91
ld a,h	 124
or L	 181
ret z	 200
Id hl, (23635)	 42 83 92
Id de, (23296)	 237 91 0 91

next line	 call check	 205 76* 127*
jr nc, find GOTO	 48 22
Id b, (hl)	 70
Id (hl),d	 114
inc hl	 35
Id c, (hl)	 78
Id (hl),e	 115
inc hl	 35
Id (hl),c	 113
inc hl	 35
Id (hl),b	 112
inc hl	 35
push hl	 229
Id hl, (23298)	 42 2 91
add hl,de	 25
ex de, hl	 235
pop hl	 225
call end of line	 205 65* 127*
jr next line	 24 229

find GOTO	 Id hl, (23635)	 42 83 92
inc hl	 35
inc hl	 35
inc hl	 35
inc hl	 35

search
	 call find
	

205 235* 126*
jp nc, restore
	 210 184* 126*

Id d,h
	

84
Id e, 1
	

93
Id b, O
	

60

inc b
inc hl
Id a, (hl)
cp 46
jr nz, continue

ex de,hl
jr search

cp 14
jr nz, next digit
inc hl
inc hl
inc hI
inc hl
inc hl
inc hl
Id a, (hl)
cp 58
jr z, found
cp 13
jr nz, find next

Id a, b

cp 4
jr z, calculate
jr nc, find next
push de
Id h,d
Id 1,e
push of
Id a, 48
call 3976
pop of
inc a
pop de
jr compare

Id b,d
Id c,e
push de
Id hl, O
Id de, 1000
call add
Id de, 100
call add
Id e, 10
call add
Id a, (bc)
sub 48

4
35
126
254 46
32 3

235
24 236

254 14
32 242
35
35
35
35
35
35
126
254 58
40 4
254 13
32 234

120

254 4
40 16
48 227
213
98
107
245
62 48
205 136 15
241
60
209
24 236

66
75
213
33 0 0
17 232 3
205 226* 126*
17 100 0
205 226* 126*
30 10
205 226* 126*
10
214 48

104
	 105

205 212*	 126*
17 100 0
205 212*	 126*
30 10
205 212* 126*	 poke

30 1
205 212* 126*
3
151	 add
2
3
2	 repeat
3
225

call insert
Id de, 100
call insert
Id e, 10
call insert
Id e, 1
call insert
inc be
sub a
Id (bc),a
inc be
Id (bc),a
inc be
pop hl

Id e, a	 95	 Id a,l	 125
add hl,de	 25	 Id (bc),a	 2
Id b,h	 68	 inc be	 3
Id c,l	 77	 Id a,h	 124
Id hl, (23635)	 42 83 92	 Id (bc),a	 2

find line	 inc hl	 35	 inc bc	 3

inc hl	 35	 sub a	 151

end of prog	 call check	 205 76* 127*	 pop
 p(bc 	 2

jr c, exists	 56 3	
pop hl	 225

hl	 225	
15* 126*

pop	
jpsearch	 195 15 126

jr search	 24 153	 restore	 Id hl, (23635)	 42 83 92

exists	 Id a, hl	 126	
following	 inc hl	 35

a ()	 inc hl	 35
cp c	 185	 call check	 205 76* 127*
jr nc, next byte	 48 7	 ret nc	 208
inc hl	 35 	 Id b,h	 68

wrong line	 inc hl	 35	 Id c,l	 77
call end of line	 205 65* 127*	 call end of line	 205 65* 127*
jr find line	 24 235	 push hl	 229

next byte	 inc hl	 35	 and a	 167
Id a, (hl)	 126	 sbc hl,bc	 237 66
cp b	 184	 dec hl	 43
jr c, wrong line	 56 245	 dec hl	 43
dec hl	 43	 Id a,l	 125
dec hl	 43	 Id (bc),a	 2
Id c, (hl)	 78	 inc bc	 3
dec hl	 43	 Id a,h	 124
Id h, (hl)	 102	 Id (bc),a	 2
Id 1, c	 105	 pop hl	 225
pop bc	 193	 jr following line	 24 231
push bc	 197	 insert	 Id a, 48	 62 48
push hl	 229	 subtract	 and a	 167
Id de, 1000	 17 232 3

jr c
hsbc
pokej, po	 60 3

inc a	 60
jr subtract	 24 248

add hl,de	 25
Id (bc),a	 2
inc be	 3
ret	 201

Id a, (bc)	 10
inc be	 3
sub 47	 214 47

dec a	 61
ret z	 200
add hl,de	 25

82237

106	 107

jr repeat	 24 251

find	 Id a, (hl)	 126
call check	 205 76* 127*
ret nc	 208
cp 234	 254 234
jr nz not REM	 32 13

find ENTER	 inc hl	 35
Id a, (hl)	 126
cp 13	 254 13
jr nz, find ENTER	 32 250

increase	 inc hl	 35
inc hl	 35
inc hl	 35
inc hl	 35
inc hl	 35
jr find	 24 234

not REM	 cp 34	 254 34
jr nz, not string	 32 9

next character	 inc hl	 35
Id a, (hl)	 126
cp 34	 254 34
jr nz, next character	 32 250
inc hl	 35
jr find	 24 221

not string	 cp 13
	

254 13
jr z, increase	 40 232
call 6326
	

205 182 24
jr z, find
	

40 212
cp 237
	

254 237
jr z, check digit
	

40 27
cp 236
	

254 236
jr z, check digit
	

40 23
cp 247
	

254 247
jr z, check digit
	

40 19
cp 240
	

254 240
jr z, check digit
	

40 15
cp 229
	

254 229
jr z, check digit
	

40 11
cp 225
	

254 225
jr z, check digit
	

40 7
cp 202
	

254 202
jr z, check digit
	

40 3
inc hl
	

35
jr find
	

24 181
check digit
	

inc hl
	

35

108

Id a, (hl)	 126
cp 48	 254 48
jr c, find	 56 175
cp 58	 254 58
jr nc, find	 48 171
ret	 201

end of line	 Id a, (hl)	 126
again	 call 6326	 205 182 24

jr z, again	 40 251
cp 13	 254 13
inc hl	 35
jr nz, end of line	 32 245

check	 push hl	 229
push de	 213
Id de, (23627)	 237 91 75 92
and a	 167
sbc hl,de	 237 82
pop de	 209
pop hl	 225
ret	 201

How it works
The hl register pair is loaded with the first line number. If this is zero,
the routine returns to BASIC. hl is then loaded with the step, and if this is
zero the routine returns to BASIC.

hl is loaded with the address of the BASIC program, and de is set to
the first line number. The subroutine `check' is then called, and if the end of
the BASIC program has been reached, a jump is made to `find GOTO'. bc
is loaded with the old number of the line encountered, and the number is
replaced by de, bc is then copied into the line pointers.

hl is saved on the stack, is loaded with the step, and increased by de.
The result is copied into de, being the next line number. hl is then
retrieved from the stack, and the subroutine `end of line' increases it, so
that it points to the next line. The routine then loops back to `next line'.

At `find GOTO', hl is loaded with the address of the BASIC program and
this is increased to point to the first character of the first line. The
subroutine `find' is then called. If there are no more GOTOs, GOSUBs etc
left to alter, the routine jumps to `restore'. Otherwise, on return from the
subroutine hl holds the address of the first digit after the GOTO, GOSUB,
etc. This is copied into de, and the b register is set to zero. The b register is
used to count the number of digits in the following number.

The b register is incremented, and hl is increased to point to the next
character and this character is then loaded into the accumulator. If the
character is a decimal point hl is loaded with de and the routine loops back
to search, to find the next GOTO. If the character is not the NUMBER
token the routine loops to `next digit'.

109

hl is increased to point to the character following the NUMBER. If this
is not a colon or an ENTER token the routine jumps back to `find next'
as the GOTO being tested has a calculated destination. The accumulator is
loaded with the value in the b register. I f this is four the routine jumps to
`calculate'; if it is more than four a jump is made back to `find next' as
line numbers more than 9999 are invalid.

de is then saved on the stack, and copied into hl. The accumulator is

then saved on the stack, and loaded with the code of the zero character.
This is inserted at the address in hl by the ROM routine at address 3976.
The accumulator is retrieved from the stack and incremented. It then holds
the new number of digits in the line number. de is retrieved from the stack,
and the routine loops to `compare'.

At `calculate', the address in de is copied into bc, and then saved on
the stack. hl is loaded with zero, and de is loaded with 1000. The subroutine
`add' is then called, to add to hl the number of thousands in the line number
under scrutiny. This is then repeated for the hundreds, tens and units, thus
loading hl with the line number. The bc register pair is loaded with the
result.

The hl register pair is loaded with the address of the BASIC program.
The `check' subroutine is called, and if the end of the program area has
been reached, the routine retrieves hl from the stack and jumps to `search',
because the destination of the GOTO does not exist. If the byte addressed
by hl is less than the value of the c register, hl is increased to point to the
next line, and a jump made to `find line'. Otherwise hl is incremented to
point to the next byte of the line number under test. If this is less than the
value of the b register a jump is made to `wrong line'.

To reach this stage the destination of the GOTO must have been found.
hl is decreased to point to the start of the line, and then loaded with its new
line number. bc is loaded with the address on the stack, and then hl is saved
on the stack. bc now holds the address to which the line number is to be
copied. de is loaded with 1000, and the subroutine `insert' is called. This
calculates the number of thousands in hl, adds 48 to produce a readable
digit, and POKEs the value into bc. bc is then increased to point to the next
character. This process is repeated for the hundreds, tens and units.

The binary representation of the line number is then built up; bc is
increased to point to the character after the NUMBER token and the next
two bytes are POKEd with zero. hl is then retrieved from the stack, and
POKEd into the following two bytes. The fifth byte of the number is POKEd
with zero. hl is retrieved from the stack, and the routine jumps to `search' to
repeat the process for the next GOTO.

At `restore', hl is loaded with the address of the BASIC program area,
and then incremented twice to address the pointers of the following line,
which actually hold the old line number. The subroutine `check' is called,
and if the end of the BASIC program has been reached the routine returns
to BASIC. bc is loaded with the address in hl, and the subroutine
`end of line' is called. This returns one plus the address of the ENTER
token in hl. hl is saved on the stack. bc is subtracted from hl, and then

110

hl is decremented twice producing the new line pointers which are POKEd
on to bc and bc + 1. hl is retrieved from the stack, and a jump made to
`following line'.

Subroutines

Insert:
The accumulator is loaded with the code of the zero character. de is
subtracted from hl, and if the result is negative, a jump is made to `poke'.
Otherwise the accumulator is incremented and a loop made to `subtract'.

At `poke', de is added to hl to produce a positive value. bc is POKEd
with the value in the accumulator, and then incremented to point to the next
byte. A return is then made.
Add:
The accumulator is loaded with the byte addressed by bc, and be is
incremented to point to the next byte. 47 is subtracted from the accumulator.
The accumulator is decremented and if the result is zero, a return is made.
Otherwise de is added to hl, and the routine loops to `repeat'.
Find:
The accumulator is loaded with the byte addressed by hl. The `check'
subroutine is then called, and if the end of the BASIC program has
been reached a return is made. If the character in the accumulator is not
the `REM' token a jump is made to `not REM'. hl is incremented
repeatedly until the end of the line is found. hl is increased to point
to the first character of the next line, and a jump is made to `find'.

At `not REM', if the accumulator does not hold the code of the quote
character, a jump is made to `not string'. Otherwise hl is incremented
repeatedly until a second quote symbol is found. hl is incremented once
more to point to the next character, and a jump is made back to `find'.

At `not string', if the accumulator holds the ENTER token a loop is
made to `increase', if it holds the NUMBER token the routine loops to
`find'. If none of the GOSUB, GOTO, RUN, LIST, RESTORE, LLIST,
LINE instructions has been found, hl is incremented and a jump made
to `find'. hl is incremented, and the accumulator loaded with the next
character. If this is not in the range 48-57 the routine jumps to `find'. The
routine then returns.
End of Line:
The accumulator is loaded with the byte addressed by hl. If this is the
NUMBER token hl is increased and a loop made to `again'. hl is
incremented. If the accumulator does not hold the ENTER token the
routine jumps to `end of line'. A test is made to see if the end of the BASIC
program has been reached, and the routine then returns.

Memory Left

Length: 14
Number of Variables: O
Check sum: 1443

111

Machine Code Listing
Label	 Assembly language

	
Numbers to be entered

Id hl, O	 33 O O
add hl, sp	 57
ld de, (23653)	 237 91 101 92
and a	 167
sbc hl,de	 237 82
ld b,h	 68
Id c,l	 77
ret	 201

How it works
The hl register pair is set to zero, and the address of the end of spare RAM
is added to it (the address is stored in sp). The de register pair is
loaded with the address of the start of spare RAM, and is subtracted from
hl. hl is copied into bc, and the routine returns to BASIC.

Program Length

Length: 13
Number of Variables: O
Check sum: 1544

Operation
	

Comments
Returns the amount of spare RAM in bytes. 	 None

Call
	

Machine Code Listing
PRINT USR address	 Label	 Assembly language

	
Numbers to be entered

Error Checks	
Id hl, (23627)	 42 75 92
Id de, (23635)	 237 91 83 92

None	 and a	 167
sbc hl,de	 237 82

Comments	 Id b,h	 68
This routine should be called before using any routines that may increase 	 Id c,l	 77
the program length, to ensure that there is enough spare RAM.	 ret	 201

How it works
The hi register pair is loaded with the address of the variables area, and de
is loaded with the address of the BASIC program. de is subtracted from
hl, to give the program length. hl is copied into bc, and the routine returns
to BASIC.

Line Address

Length: 29
Number of Variables: 1
Check sum: 2351

Operation
Returns the address of the first character after the `REM' token in a
specified line.

Variables
Name	 Length	 Location	 Comment

line number	 2	 23296	 line number which should
contain `REM'

Call
LET A = USR address

Operation
Returns the length of BASIC program, in bytes. 	 Error Checks

If the specified line does not exist or it is not a REM statement, the routine
Call	 will return the value zero.
PRINT USR address

Comments
Error Checks	 This routine can be used to find the address at which machine-code should
None	 be POKEd to be positioned in a REM statement.

112	 113

When called, the variable A (any variable could be used) is set to the
address, or zero if an error occurs. Do not enter line numbers more than
9999.

Machine Code Listing
Label	 Assembly language

	
Numbers to be entered

Id hl, (23296)
	

42091
Id a,h
	

124
or 1
	

181
jr z, error
	 40 5

call 6510
	

205 110 25
jr z, continue
	

40 4

error	 Id bc, O	 1 0 0
ret	 201

continue inc hl
inc hl
inc hl
inc hl
Id a, 234
cp (hl)
jr nz, error
inc hl
Id b,h

Id c, l

ret

How it works
The hl register pair is loaded with the specified line number. If this number
is zero a jump is made to `error' otherwise the ROM routine at address 6510
is called on return from this subroutine. hl is set to the address of the line.
If the zero flag is set a jump is made to `continue'. If the zero flag is not set,
the line does not exist, and the routine falls through to `error' where bc is
loaded with zero and the routine returns to BASIC.

If the routine reaches `continue' hl is increased by four to point to the
first instruction in the specified line. If this instruction does not have a code
of 234 a jump is made to `error'. If the instruction is a `REM' hl is increased
to point to the next character. The value of hl is then copied into bc and the
routine returns to BASIC.

Copy Memory

Length: 33
Number of Variables: 3
Check sum: 4022

114

Operation
This routine copies an area of memory from one address to another.

Va ri ables
Name

start
destination
length

Length

2
2
2

Location

23296
23298
23300

Comment

address to be copied from
address to be copied to
number of bytes to be copied

Call
RAND USR address

Error Checks
None

Comments

This routine can be used to produce animated `films' by the following
method:

(i) produce the first screen of information
(ii) copy the display to above RAMTOP
(iii) repeat for further screens.
(iv) copy the screens back one at a time in rapid succession.

Machine Code Listing
Label	 Assembly language

	
Numbers to be entered

Id hl, (23296)
	

42 0 91
Id de, (23298)
	

237 91 2 91
Id bc, (23300)
	

237 75 4 91
Id a,b
	

120
or c	 177
ret z	 200
and a	 167
sbc hl,de	 237 82
ret z	 200
add hl,de	 25
jr c, lddr	 56 3
ldir	 237 176
ret
	

201
lddr	 ex de,hl

	
235

add hl,bc	 9
ex de,hl
	

235
add hl,bc	 9
dec hl
	

43
dec de	 27
lddr	 237 184
ret
	

201

115

35
35
35
35
62 234
190
32 243
35
68
77
201

How it works
The hl register pair is loaded with the address of the first byte of memory to
be copied, de is loaded with the address that it is to be copied to, and bc is
loaded with the number of bytes to be copied. If bc is zero or hl = de then
the routine returns to BASIC. If hl is more than de, the section of memory
is copied using the 'Idir' instruction, and then the routine returns to BASIC.

If de is more than hl, be-1 is added to both register pairs, the memory
is copied using the `lddr' instruction, and the routine returns to BASIC.

Zero all Variables

add hl,de	 25
jr check	 24 232

string	 inc hl	 35
Id c,(hl)	 78
ld (hl),d	 114
inc hl	 35
Id b,(hl)	 70
Id (hl),d	 114
inc hl	 35

delete	 Id a,b	 120
or c	 177

Length: 108	 jr z, check	 40 221
Number of Variables: O	 push bc	 197
Check sum: 10717	 call 4120	 205 24 16

pop be	 193
Operation	 dec bc	 11
All numeric variables are given the value zero, all dimensioned strings are	 jr delete	 24 244

filled with spaces, and non-dimensioned strings are set to length zero (null 	 next bit	 bit 6,a	 203 119
strings).	 jr nz, bit 5	 32 45

bit 5,a	 203 111
jr z, array	 40 7

number	 inc hl	 35
bit 7, (hl)	 203 126
jr z, number	 40 251

If there are no variables in memory the routine returns to BASIC immediately. 	 jr zero	 24 213
array	 sub a	 151
find length	 puch of	 245

inc hl	 35
Id c, (h1)	 78
inc hl	 35
Id b, (hl)	 70
inc hl	 35
push hl	 229
Id 1, (hl)	 110
ld h, d	 98
add hl,hl	 41
pop de	 209

find elements	 inc de	 19
dec be	 11

203 111	 dec hl	 43
40 9	 Id a,h	 124

or 	 181
jr nz, find elements	 32 249
dec be	 11

rub out	 inc de	 19
dec be	 11

Call
RAND USR address

Error Checks

Comments

This routine is a useful debugging aid.

Machine Code Listing

Label	 Assembly language	 Numbers to be entered

Id hl, (23627)	 42 75 92

check	 ld a, (hl)	 126
cp 128	 254 128
ret z	 200
Id de,l	 17 1 0
bit 7,a	 203 127
jr nz, next bit 	 32 32

zero

next byte

bit 5,a
jr z, `string'

ld b,5

inc hl
Id (h1),d
djnz next byte

65

35
114
16 252

116	 117

pop of
	

241
push of
	

245
Id (de),a
	 18

Id a,b
	

120
or c
	 177

jr nz, rub out
	

32 247
pop of
	

241

restore
	 inc de
	 19

rx de,hl
	

235
jr check
	

24 164

bit 5
	

bit 5,a
	 203 111

jr z, string array
	

40 5
ld de, 14
	

17 14 0
jr `zero'
	

24 170

string array
	

Id a, 32
	

62 32
jr find length
	

24 210

How it works
The hl register pair is loaded with the address of the start of the variables
area. The accumulator is loaded with the byte stored at hl. If the value of
this byte is 128 the routine returns to BASIC, because the code 128 marks
the end of the variables. The de register is loaded with the value one for use
later in the routine. If bit 7 of the accumulator is set to one, the routine
jumps to `next bit' then, if bit 5 is set to zero, the routine jumps to `string'.

To reach `zero' without jumping ahead in the routine, the variable
found must be a number whose name is one letter long. The b register is set
to five, to be used as a counter, hl is incremented to point to the next byte
and this is POKEd with zero. The counter is decremented, and if zero has
not been reached the routine loops back to `next byte'. de is then added to
hl to point to the next variable and a jump is made back to `check'.

If the routine reaches `string' hl is incremented to point to the bytes
holding the length of string found. The old length is loaded into bc to be
used as a counter, and the new length is set to zero. hl is again incremented
to point to the text of the string. If the counter is set to zero, hl now points
to the next variable and so a jump is made back to `check'. If not, then bc
is saved on the stack and the ROM routine at address 4120 is called to
delete one character. The counter is then retrieved from the stack,
decremented, and a jump is made back to `delete'.

At `next bit', bit six of the accumulator is checked. If it is set to one a
jump is made to `bit 5' as a string array or FOR/NEXT control variable has
been found. If it is set to zero, and bit five is set to zero a jump is made to
`array'.

To reach `number' the variable found must be a number with a name
more than one character long. The hl register pair is incremented to point to
the next byte, and this is repeated until a byte is encountered with bit

118

seven set to one. When this is found the routine jumps to `zero' to load
with variable with nought.

If the routine reaches `array' the accumulator is loaded with zero,
because this is the value which the elements must be set to later.

At `find length' the accumulator is saved on the stack and hl is
incremented to point to the bytes holding the array length. This is copied
into bc for use as a counter. hl is agian incremented, so that it now points to
the byte holding the number of dimensions, and then hl is saved on the
stack. hl is loaded with the number of dimensions and this is multiplied by
two. de is set to the address saved on the stack, then de is incremented hl
times and bc is decremented (h1+ 1) times. de is then incremented and bc
decremented again. de now points to the next element of the array and bc
holds the number of bytes left before the end is reached. The accumulator
is retrieved from the stack and this is POKEd into de. The counter in bc is
decremented, and if it does not hold zero the routine jumps back to `rub
out'. The value in hl is then adjusted to point to the next variable, and a
jump is made to `check'.

At `bit 5' a test is made to see if a string array has been encountered.
If so, the accumulator is set to the code for a space and a jump is made to
`find length'. To reach this point, the variable must be a FOR/NEXT
control variable. de is set to 14 so that adding this to (h1+ 5) points to the
next variable. The routine then jumps back to `zero'.

List Variables

Length: 94
Number of Variables: O
Check sum: 10295

Operation
This routine lists the names of all the variables presently in memory.

Call
RAND USR address

Error Checks
If there are no variables in memory the routine returns to BASIC immediately.

Comments
This is a useful aid for program debugging, particularly with long or
complex programs.

Machine Code Listing
Label	 Assembly language

	
Numbers to be entered

res O, (IY+2)
	

253 203 2 134
Id hl, (23627)
	

42 75 92

119

next variable

print

string array

brackets

pointers

next bit

next character

last character

jump

array

ld a, 13	 62 13
rst 16	 215
Id a, 32	 62 32
rst 16	 215
Id a, (hl)	 126
cp 128	 254 128
ret z	 200
bit 7,a	 203 127
jr z, bit 5	 40 62
bit 6,a	 203 119
jr z, next bit	 40 31
bit 5,a	 203 111
jr z, string array	 40 9
sub 128	 214 128
Id de, 19	 17 19 0

rst 16	 215
add hl,de	 25
jr next variable	 24 225

sub 96	 214 96
rst 16	 215
Id a, 36	 62 36

rst 16	 215
lda,40	 62 40
rst 16	 215
Ida,41	 62 41

inc hl	 35
Id e, (hl)	 94
inc hl	 35
ld d, (hl)	 86
inc hl	 35
jr print	 24 234

bit 5,a	 203 111
jr z, array	 40 19
sub 64	 214 64
rst 16	 215

inc hl	 35
Id a, (hl)	 126
bit 7,a	 203 127
jr nz, last character	 32 3
rst 16	 215
jr next character	 24 247

sub 128	 214 128

Id de, 6
	

17 6 0
jr print
	

24 211

sub 32
	

214 32

jr brackets	 24 216
bit 5
	

bit 5,a	 203 111
jr nz, jump	 32 243
add a, 32
	

198 32
rst 16
	

215
Id a, 36
	

62 36
jr pointers	 24 211

How it works

Bit O of the byte at address 23612 is reset to ensure that any characters
PRINTed appear in the top part of the screen. hl is loaded with the address
of the variables area. The accumulator is loaded with the ENTER token
and this is PRINTed using the ROM routine at address 16. The accumulator
is then loaded with the code for a space and this is PRINTed using the same
routine.

The accumulator is loaded with the byte stored at the address in hl. If
the value of this is 128 the routine returns to BASIC because the end of the
variables area has been reached.

If bit 7 of the accumulator is set to zero the routine jumps to `bit 5'
because a string, or a number whose name is one letter only, has been
encountered. bit 6 of the accumulator is tested. If it is set to zero a jump is
made to `next bit' because an array, or a number whose name is more than
one letter, has been found. If bit 5 of the accumulator is zero the routine
jumps to `string array'.

The routine reaches this point if the variable found is the control of a
FOR/NEXT loop, 128 is subtracted from the accumulator, the result being
the code of the character to be PRINTed. de is loaded with 19 to point to
the next variable when added to hl, the character in the accumulator is
PRINTed, de is added to hl, and the routine loops back to `next variable'.

If the routine reaches `string array' 96 is subtracted from the
accumulator, to give the code of the name of the array found. This is
PRINTed using the ROM routine. A dollar sign and an open-bracket
are then PRINTed, and the accumulator is loaded with the code of a close-
bracket. hl is increased to point to the bytes holding the length of the array.
This is loaded into de, so that adding to hl gives the address of the next
variable. A jump is made to `print' where the close-bracket is PRINTed and
de is added to hl.

At `next bit', bit 5 of the accumulator is tested. If it is set to zero, a
jump is made to `array'. If it is set to one, a number has been found whose
name is longer than one letter. 64 is subtracted from the accumulator and
the resulting character is PRINTed. Then the routine loops, PRINTing each
character encountered, until one is found with bit 7 set to one. 128 is
subtracted from the character code, de is loaded with the displacement to
the next variable, and the routine jumps to `print'.

If an array is found 32 is subtracted from the accumulator to give the
correct code, and a jump is made to `brackets'.

120
	

121

At `bit 5', if a number has been found whose name is one letter only,
the routine loops back to `jump'.

To get to this section, the variable encountered must be a string.
Subtracting 32 from the accumulator gives the code to be PRINTed. Finally
the accumulator is loaded with the code for a dollar sign, and a jump is
made to `pointers'.

Search and List

Length: 155
Number of Variables: 2
Check sum: 17221

Operation
This routine searches through a BASIC program and lists every line
containing a string of characters specified by the user.

Variables
Name	 Length	 Location	 Comments

data start	 2	 23296	 address of first byte of data
string length	 1	 23298	 number of characters in

string

Call
RAND USR address

Error Checks
If there is no BASIC program in memory or the string is zero characters in
length, the routine returns to BASIC immediately.

Comments
The time taken by this routine is proportional to both the length of the
string and the length of the BASIC program.

The string to be searched for should be POKEd above RAMTOP and
the address of the first byte of the string POKEd into 23296/7. The string
length should be stored in 23298.

Machine Code Listing
Assembly language	 Numbers to be entered

res O, (IY + 2)
Id ix, (23296)
Id hl, (23635)

Id a, (23298)
lde,a
cp O

ret z
push hl

restore push ix
pop bc
Id d, O
inc hl
inc hl
inc hl

check	 inc hl
push de
Id de, (23627)
and a
sbc hl,de
add hl,de
pop de
jr c, enter
pop hl
ret

long jump	 jr restart
enter	 Id a, (hp

cp 13
jr nz, number
inc hl
pop bc
push hl
jr restore

number	 call 6326
jr nz, compare
dec hl

different push ix
pop bc
Id d, O
jr check

compare	 Id a, (bc)
cp (hl)
jr nz, different
inc bc
inc d
Id a,d
cp e
jr nz, check
Id a, 13
rst 16
pop hl
push hl
Id b, (hl)

200
229

221 229
193
22 0
35
35
35

35
213
237 91 75 92
167
237 82
25
209
56 4
225
201

24 223

126
254 13
32 5
35
193
229
24 221

205 182 24
32 8
43

221 229
193
22 0
24 216
10
190
32 245
3
20
122
187
32 206
62 13
215
225
229
70

Label

restart

253 203 2 134
221 42 0 91
42 83 92

58 2 91
95
254 0

122	 123

inc hl	 35
Id 1, (hl)	 110
ldh,b	 96
Id de, 1000	 17 232 3
Id a, 47	 62 47

thousands	 inc a	 60
and a	 167
sbc hl,de	 237 82
jr nc, thousands	 48 250
add hl, de	 25
rst 16	 215
ld de, 100	 17 100 0
Id a, 47	 62 47

hundreds	 inc a	 60
and a	 167
sbc hl, de	 237 82
jr nc, hundreds	 48 250
add hl,de	 25
rst 16	 215
Id de, 10	 17 10 0
Id a, 47	 62 47

tens	 inc a	 60
and a	 167
sbc hl,de	 237 82
jr nc, tens	 48 250
add hl, de	 25
rst 16	 215
Id a,l	 125
add a, 48	 198 48
rst 16	 215
pop hl	 225
inc hl	 35
inc hl	 35
inc hl	 35

next character	 inc hl	 35
Id a, (hl)	 126

line end	 cp 13	 254 13
jr nz, chr 14	 32 4
rst 16	 215
inc hl	 35
jr long jump	 24 155

chr 14	 ca116326	 205 182 24
jr z, line end	 40 243
cp 32	 254 32
jr c, next character	 56 237
rst 16	 215
jr next character	 24 234

124

How it works
Bit O of the byte stored at address 23612 is reset to ensure that any characters
PRINTed appear in the top part of the screen. ix is loaded with the address
of the first byte of data. This allows the address to be loaded into other
register pairs, using less references to the printer buffer. hl is loaded with
the address of the BASIC program.

The accumulator is loaded with the length of the string and this is
copied into the e register. If the length is zero the routine returns to BASIC
immediately. The address in hl is saved on the stack, holding the position in
memory of the line currently being searched.

The address of the data is copied from ix into bc to be more accessible.
The d register is loaded with zero, ie the number of characters found that
match the data entered. The hl register pair is increased by three to point to
the high byte of the line pointer. hl is incremented to point to the next
character. The de register pair is saved on the stack.

de is loaded with the address of the variables area, and this is subtracted
from hl. If the result is negative the routine jumps to `enter' after restoring
hl and retrieving de from the stack. If the result was positive the stack is
restored to its original size and the routine returns to BASIC, as the end of
the BASIC program had been reached.

At `enter' the accumulator is loaded with the byte stored at the address
in hl. If this is not the ENTER token a jump is made to `number'. If the
ENTER token is found hl is increased to point to the start of the next
line. The address of the previous line is removed from the stack and is
replaced by the new value in hl. Then a jump is made to `restore'.

At `number' the ROM routine at address 6326 is called. If the character
in the accumulator is the NUMBER token, hl is increased to point to the
first character after the binary representation of the number found by the
ROM routine. If the NUMBER token is not found the routine jumps to
`compare', otherwise hl is decremented and the routine `falls through' to
`different'. bc is copied from ix, the number of characters found is reset to
zero, and a jump is made to `check'.

At `compare' the accumulator is loaded with the byte stored at the
address in bc. If this is not the same as the byte stored at the address in hl,
the routine loops back to `different'. bc is incremented to point to the next
data byte, and the number of characters found is increased. If this is not
equal to the length of the string the routine loops back to `check'.

The accumulator is loaded with the code of the ENTER token and this
is PRINTed using the ROM routine at address 16. The address of the line to
be PRINTed is loaded from the stack into hl. The line number is then copied
into hl via the b register. de is loaded with 1000 and the accumulator is
loaded with one less than the code of the "O" character. The accumulator
is incremented and de is repeatedly subtracted from hl until hl is negative.
Then de is added once to hl to produce a positive remainder. The character
in the accumulator is then PRINTed.

125

Length Location

2 23296

1 23298

2 23299

Variables
Name

old data start

string length

new data start

Comment

address of string to be
replaced
length of string to be
replaced
address of replacement
string

The above process is then repeated for de = 100 and de = 10. Then the
remainder is loaded into the accumulator, 48 is added, and the resultant
character is PRINTed.

The address of the start of the line is retrieved from the stack, and
loaded into hl. Then hl is increased to point to the high byte of the line
pointer, hl is incremented, and the byte at hl is loaded into the accumulator.
If this byte is not the ENTER token a jump is made to `chr 14', otherwise
the ENTER is PRINTed, hl is incremented, and a jump is made back to
`restart'.

At `chr 14', the ROM routine at address 6326 is called. If the character
in the accumulator is the NUMBER token, hl is increased to point to the
first character after the number found, this character is loaded into the
accumulator, and a jump is made to `line end'. Then, if the character in the
accumulator has a code less than 32, the routine loops back to `next
character'. If the code is more than 31 the character found is PRINTed and
a jump is made to `next character'.

Search and Replace

Length: 85
Number of Variables: 3
Check sum: 8518

Operation
This routine searches a BASIC program for a string of characters, and
replaces every occurrence by another string of the same length.

Call
RAND USR address

Error Checks
If the string length is zero or there is no BASIC program in memory the
routine returns to BASIC immediately.

Comments
The time taken by this routine is dependent on the string length and the
length of the BASIC program in memory.

126

Machine Code Listing
Label	 Assembly language	 Numbers to be entered

Id ix, (23296)	 221 42 0 91
Id hl, (23635)	 42 83 92
Id a, (23298)	 58 2 91
Id e, a	 95
cp O	 254 O
ret z	 200
dec hl	 43
inc hl	 35
inc hl	 35
inc hl	 35
inc hl	 35
jr reset	 24 23
inc hl	 35
push de	 213
Id de, (23627)	 237 91 75 92
and a	 167
sbc hl,de	 237 82
add hl,de	 25
pop de	 209
ret nc	 208
Id a, (hl)	 126
cp 13	 254 13
jr z, new line	 40 233
call 6326	 205 182 24
jr nz, compare	 32 8
dec hl	 43
push ix	 221 229
pop bc	 193
1d d, O	 22 0
jr check	 24 226
Id a, (bc)	 10
cp (hl)	 190
jr nz, reset	 32 245
inc bc	 3
inc d	 20
Id a,d	 122
cp e	 187
jr nz, check	 32 216
push hl	 229
1d d, O	 22 0
and a	 167
sbc hl,de	 237 82
ld d,e	 83
Id bc, (23299)	 237 75 3 91
inc d	 20

127

new line

check

reset

compare

next char

finish

inc hl	 35
decd	 21
jr z, finish	 40 5
Id a, (bc)	 10
Id (hl),a	 119
inc be	 3
jr next char	 24 247

pop hl	 225
jr reset	 24 215

ROM Search

Length: 58
Number of Variables: 3
Check sum: 6533

Operation

This routine searches the ROM for a pattern of bytes specified by the user.

How it works

ix is loaded with the address of the string to be searched for. This should be
above RAMTOP. hl is loaded with the address of the program area, and
the accumulator is loaded with the length of the string. The length is copied
into the e register for use later in the program. If the string length is zero the
routine returns to BASIC. hl is adjusted to point to the high byte of the
next BASIC line pointer and a jump is made to `reset'.

At `check' hl is incremented to point to the next character. de is saved
on the stack, and loaded with the address of the variables area. If hl is not
less than de the end of the program has been reached and so, after restoring
de from the stack, the routine returns to BASIC.

The accumulator is loaded with the character addressed by hl. If this is
the ENTER token the routine loops back to `newline'. If the accumulator
does not hold the NUMBER token (character 14) a jump is made to
`compare', otherwise hl is increased by five, so that hl points to the fifth
byte of the number found.

At `reset' bc is loaded with the address of the string to be searched for.
The d register is set to zero to hold the number of characters in the string
found so far. The routine then loops back to `check'.
At `compare' the accumulator is loaded with the character in the string that
is pointed to by bc. If this is different to the byte addressed by hl, the routine
jumps to `reset'. bc is incremented to point to the next character in the
string, and the counter in the d register is incremented. If this is not equal to
the length of the string the routine loops back to `check'.

If the string has been found hl is saved on the stack, so that the routine
starts searching for the next occurrence from this address. de is loaded with
the length of the string and this is subtracted from hl to give one less than
the start address. The string length is then loaded into d for use as a counter.
bc is loaded with the start address of the new string, and the d register is
incremented. The hl register is incremented to point to the next location and
the counter is decremented. If the counter holds zero hl is retrieved from the
stack and a jump is made to `reset' to find the next occurrence. The
accumulator is loaded with the character pointed to by bc and this is
POKEd into hl. bc in incremented to point to the next character and the
routine loops back to `next char'.

Variables

Name

search start

string length
data start

Length

2

1
2

Location

23296

23298
23299

Comment

start of memory to be
searched
number of bytes in string
address of string in RAM

Call

PRINT USR address

Error Checks

If the length of the string is zero the routine returns to BASIC immediately,
giving the address of the start of the data. If the string is not found the value
of 65535 is returned.

Comments

When writing machine code programs this routine can be used to find sub-
routines in the ROM, if the user already knows how part of the routine is
written.

As most of the Spectrum ROM is adapted from the ZX81, programs
originally written for the ZX81 can be easily adapted. For example, the
`Line Address' routine calls the ROM routine at address 6510. On the ZX81,
the routine starts at address 2520. Disassembling this routine gives:

push hl
Id hl, program
Id d,h*
Id e,1*
pop bc*
call 09EA

The three bytes marked by an asterisk are the same on the Spectrum,
and may be found using the search routine. In fact the routine returns the
address 6514 which is four plus the start address of the required ROM
routine.

128
	

129

Machine Code Listing
Label	 Assembly language

	
Numbers to be entered

Id hl, (23296)
	

42 0 91
Id de, (23298)
	

237 91 2 91

restart	 Id bc, (23299)
	

237 75 3 91
Id a,e
	 123

cp O
	

254 0
ret z
	 200

push hl
	

229
Id d, O
	

22 0

compare	 Id a, (bc)
	

10
cp (hl)
	

190
jr z, match
	

40 25
pop hl
	

225
inc hl
	

35
push de
	 213

push hl
	

229
Id hl, 16384
	

33 0 64
Id,0
	

22 0
and a
	 167

sbc hl,de
	 237 82

inc hl
	

35
pop de
	 209

and a
	 167

sbc hl,de
	 237 82

ex de,hl
	

235
pop de
	 209

jr nz, restart
	

32 220
Id bc, 65535
	

1 255 255
ret
	

201

match	 inc d
	

20
Id a,d
	

122
cp e
	 187

jr nz, next byte
	 32 2

pop bc
	 193

ret
	

201

next byte	 inc hl
	

35
inc bc
	

3
jr compare
	 24 216

How it works
The hl register pair is loaded with the address of the first location in memory
that is to be checked. To find the first occurrence in the ROM, this should
be set to zero. The e register is loaded with the number of bytes in the string
being searched for. The bc register pair is loaded with the address of the

130

string, entered by the user, in RAM. The accumulator is loaded with the
string length, and if this is zero the routine returns to BASIC.

The address in hl is saved on the stack. The accumulator is loaded with
the byte pointed to by the bc register pair. If this is the same as the byte
pointed to by hl a jump is made to match. If the two bytes are different, hl
is loaded with the address on the stack. This is then incremented to point to
the next location in memory.

The de and hl registers are saved on the stack, hl is loaded with the
address of the first byte of RAM, and de is loaded with the string length. de
is subtracted from hl to give the highest possible start address for the string.
This is incremented to point to the first address at which the string could
not be held.

The address on the top of the stack is loaded into de and this is
subtracted from hl. The result of this operation is remembered whilst hl is
loaded with the contents of de, and de is loaded with the number on the
stack. If the result was zero, bc is loaded with 65535 and the routine returns
to BASIC as the string does not exist in the ROM. If the result was not zero
the routine loops back to `restart'.

At `Match' the d register is incremented to hold the number of bytes
found that have matched. If this equals the length of the string bc is
retrieved from the stack and the routine returns to BASIC. If the d register
did not hold the length of the string, hl and bc are both incremented to
point to the next bytes and the routine loops to `compare'.

Instr$

Length: 168
Number of Variables: O
Check sum: 19875

Operation
This routine returns the position of a substring (B$) in a main string (A$), or
zero if an error occurs.

Call
Let P = USR address

Error Checks
If either string does not exist, the length of the substring is zero, or the length
of the substring is more than the length of the main string, the routine
returns the value zero.

If an error does not occur, but the substring cannot be found in the
main string, the routine also returns to zero.

Comments
On return from the machine code routine the variable P (any other variable
could be used) will hold the return value. The strings referred to cannot

131

inc hl
inc hl

increase	 inc hl
jr next variable

for-next	 cp 224
jr c, next bit
push de
Id de, 18
jr add

next bit	 bit 5,a
jr z, string

next byte	 inc hl
bit 7, (hl)
jr z, next byte
jr number

ex de,hl
inc hl
inc hl
push hl
push hl
inc bc
push bc
Id a, (bc)
Id e,a
inc bc
Id a, (bc)
Id d,a
or e
jr z, zero length
push de
Id a, (hi)
dec hl
Id 1, (hl)
Id h,a
and a
sbc hl,de
jr nc, continue
pop bc

pop bc
pop bc

pop bc

Id bc, O
ret

pop ix
pop bc

35
35
35
24 206

254 224
56 6
213
17 18 0
24 234
203 111
40 225
35
203 126
40 251
24 227
235
35
35
229
229
3
197
10
95
3
10
87
179
40 11
213
126
43
110
103
167
237 82
48 8
193

193
193

193

100
201

221 225
193

found

zero length

error

not found

continue

be DIMensioned as character arrays. To change the strings used, the
asterisked numbers should be altered. The 66* is the substring, the 65* being
the mainstring. To alter these, replace the numbers by the codes of the
characters required (A to Z = 65 to 90).

Machine Code Listing

Label	 Assembly language	 Numbers to be entered

sub a	 151
Id b,a	 71
Id c,a	 79
Id d, a	 87
Id e,a	 95
Id hl, (23627)	 42 75 92

next variable	 Id a, (hl)	 126
cp 128	 254 128
jr z, not found	 40 95
bit 7,a	 203 127
jr nz, for-next	 32 41
cp 96	 254 96
jr nc, number	 48 29
cp 65	 254 65*	 VU he ni. -tiz
jr nz, substring	 32 2
Id d,h	 84
Id e,l	 93

substring	 cp 66	 254 66*	 S"6` 1
jr nz, check	 32 2
ld b,h	 68
Id c,l	 77

check	 Id a,d	 122
ore	 179
jr z, string	 40 4
Id a, b	 120
or c	 177
jr nz, found	 32 38

string	 push de	 213
inc hl	 35
Id e, (hl)	 94
inc hl	 35
Id d, (hl)	 86

add	 add hl,de	 25
pop de	 209
jr increase	 24 5

inc hl 35
inc hl 35
inc hl 35

number

132
133

ex de,hl	 235
pop hl	 225
inc be	 3
inc be	 3

save
	 inc hl	 35

push hl	 229
push be	 197
push ix	 221 229
push de	 213

compare
	

Id a, (bc)	 10
cp (hl)	 190
jr z, match	 40 12
pop de	 209
pop ix	 221 225
pop be	 193
pop hl	 225
Id a,d	 122
ore	 179
jr z, error	 40 225
dec de	 27
jr save	 24 234

match
	

inc hl	 35
inc be	 3
push hl	 229
dec ix	 221 43
push ix	 221 229
pop hl	 225
Id a,h	 124
or1	 181
pop hl	 225
jr nz, compare	 32 227
pop de	 209
pop de	 209
and a	 167
sbc hl,de	 237 82
pop de	 209
pop de	 209
pop de	 209
and a	 167
sbc hl,de	 237 82
Id b,h	 68
Id c,l	 77
ret	 201

How it works
The accumulator, the bc register pair and the de register pair are all loaded
with zero. Later in the routine bc will be set to the address of B$ and de will

134

be set to the address of A$. hl is loaded with the address of the variables
area.

The accumulator is loaded with the byte addressed by hl. If the
accumulator holds 128 the routine jumps to `not found' as the end of the
variables area has been reached. If bit 7 of the accumulator is set to one
a jump is made to `for-next' as the variable found is not a string or a
number whose name is one letter only. If the accumulator holds a number
larger than 95 a jump is made to `number'.

To reach this stage, a string must have been found. If the accumulator
holds 65, A$ has been located and the contents of hl are copied into de. If
the accumulator holds 66, B$ has been found and hl is copied into bc. If de
does not hold zero and bc does not hold zero, both strings have been
located, and so the routine jumps to `found'.

If the routine reaches `string' de is saved on the stack, and loaded
with the length of the string encountered. This is added to the address of the
high byte of the string pointers, and stored in hl. de is retrieved from the
stack, and a jump is made to `increase'.

At `number', hl is incremented five times to point to the last byte of
any number encountered. hl is then incremented to point to the next
variable, and a jump made to `next variable'.

At `for next', if the accumulator holds a number below 224 a jump is
made to `next bit' as the variable encountered is not a FOR—NEXT loop
control. If the value in the accumulator is more than 223, eighteen is
added to hl to point to the last byte of the control, and the routine loops to
`increase'.

If the routine reaches `next bit' and bit 5 of the accumulator is set to
zero a jump is made to `string', to load hl with the address of the following
variable, as an array has been found.

If the routine reaches `next byte' a number has been found whose
name is more than one character in length. Thus hl is increased until it
points to the last character of the variable name, and then a jump is made
to `number'.

At `found' hl is loaded with the address of A$ and this is incremented
twice to give the address of the high byte of the pointers. This value is then
saved on the stack twice. bc is incremented to point to the low byte of the
pointers for BS. The address in bc is then saved on the stack. de
is loaded with the length of B$, and if this is zero a jump is made to
`zero length'. de is then PUSHed onto the stack. hl is loaded with the
length of AS, and if this is not less than de the routine jumps to `continue'.
The stack is then restored to its original size, be is loaded with zero, and the
routine returns to BASIC.

At `continue' ix is set to the length of B$, and be is set to the address of
the low byte of the pointers for B$. de is loaded with the difference in
lengths of A$ and B$, and hl is loaded with the address of the high byte of
the pointers for A$. be is then incremented twice to give the address of the
first character in B$. hl is incremented to point to the next character of A$.

135

General form Specific example	 Decimal

Id e,n
Id a, (nn)

Id (nn),de

Id (ix + d),n

ld (nn), iy
rrc (ix + d)
rrc (iy + d)

inc b
Id e,25
ld a, (23296)
res 2,d
Id (23760),de
add ix,bc
Id (ix + 193),5
add iy,bc
ld (23760),iy
rrc (ix + 5)
rrc (iy + 5)

Table and
column
number

A2, 3
A2,3
A2,3
A2,4
A2,5
A3,3
A3,3
A3,4
A3 ,4
A3,5
A3,6

4
30 25
58 0 91
203 92
237 53 208 92
221 9
221 54 193 5
253 9
253 34 208 92
221 203 5 14
253 203 5 14

Decimal Hex	 Op Code

0	 00	 nop
01	 Id bc,nn

After 203
(hex CB)

rlc b
tic c

After 237
(hex ED)

1

hl, bc, ix and de are then saved on the stack. The accumulator is loaded
with the byte addressed by be, and if this is the same as the byte addressed
by hl a jump is made to `match'. de, ix, be and hl are then retrieved from the
stack. If de holds zero a jump is made to `error' as B$ does not occur in
A$. The counter in de is then decremented, and the routine loops back to
'save'.

If the routine reaches `match' hl and be are both incremented to point
to the next characters of A$ and B$ respectively. hl is then saved on
the stack. The counter in ix is decremented and, after retrieving hl from the
stack, if ix does not hold zero a jump is made back to `compare'.

To reach this stage, an occurrence of B$ must have been found in AS.
The length of B$ is then subtracted from hl, and then the address of the high
byte of the pointers for A$ is subtracted from hl. The result is the position
in A$ of B$. This is copied into the be register pair and the routine returns
to BASIC.

APPENDIX A

There are two main tables of instructions in this appendix. Table A2.
lists the one byte instructions and those two byte instructions which are
preceded by 203 (hexadecimal CB) or 237 (hexadecimal ED). Table A3.
lists the index register instructions.

There are many patterns in the instruction set. For example, the registers
are almost always in the order b, c, d, e, h, I, (hl), a as in, for example,
the group of 8 bit register to register load instruction, numbers 64 to 127.
Similarly, the index register codes mimic the hl codes, being preceded by
221 (hexadecimal DD) when referring to the ix index register and by 233
(hexadecimal FD) when referring to the iy index register.

Some of the instructions are qualified by one or more of the following:
n	 a one byte integer between 0 and 255 inclusive
d	 a one byte displacement between 0 and 255 inclusive (index register

instructions) or between — 127 and 128 (jump instructions). Negative
values of d are obtained by subtracting the positive value from 256.

nn a two byte integer between 0 and 65535 inclusive. The most significant
byte lies second, for example 16384 (= 0 + 256*64) is held as 0,64.

Qualifiers are always placed in the byte or bytes following the
instruction to which they refer, except in three byte index register
instructions (columns 5 and 6 of table A.3) in which case they are
placed between the second and third bytes. See table Al for examples.

Table Al Some examples of the Z80A instruction set. Column one refers to the
appropriate column in tables A2 and A3.

Table A2. Z80A instructions except for index register codes (see table A3).

136
	 137

2	 02	 Id (bc),a	 tic d
3	 03	 inc bc	 rice
4	 04	 inc b	 rich
5	 05	 dec b	 rid I
6	 06	 Id b,n	 rlc (hl)
7	 07	 rlca	 rlc a
8	 08	 ex,af,af'	 rrc b
9	 09	 add hl,bc	 rrc c
10	 OA	 Id a, (bc)	 rrc d
11	 OB	 dec bc	 rrc e
12	 OC	 inc c	 rrc h
13	 OD	 dec c	 rrc 1
14	 OE	 Id c,n	 rrc (hl)
15	 OF	 rrca	 rrc a
16	 10	 djnz d	 rl b
17	 11	 Id de,nn	 rl c
18	 12	 Id (de),a	 rl d
19	 13	 inc de	 rl e
20	 14	 inc d	 rl h
21	 15	 dec d	 rl 1
22	 16	 ld d,n	 rl (hl)
23	 17	 rla	 rl a
24	 18	 jrd	 rrb
25	 19	 add hl,de	 rrc
26	 lA	 Id a, (de)	 rr d
27	 1B	 dec de	 rr e
28	 1C	 inc e	 rr h
29	 ID	 dec e	 rr l
30	 lE	 Id e,d	 rr (hl)
31	 1F	 rra	 rr a
32	 20	 jr nz,d	 sla b
33	 21	 Id hl,nn	 sla c
34	 22	 Id (nn),hl	 sla d
35	 23	 inc hl	 sla e
36	 24	 inc h	 sla h
37	 25	 dec h	 sla 1
38	 26	 Id h,n	 sla (hl)
39	 27	 daa	 s1a a
40	 28	 jr z,d	 sra b
41	 29	 add hl,hl	 sra c
42	 2A	 Id hl, (nn)	 sra d
43	 2B	 dec hl	 sra e
44	 2C	 inc 1	 sra h
45	 2D	 dec 1	 sra 1
46	 2E	 Id l,n	 sra (hl)
47	 2F	 cpl	 sra a
48	 30	 jr nc,d

49	 31	 Id sp,nn
32	 Id (nn),a50

51	 33	 inc sp
52	 34	 inc (hl)
53	 35	 dec (hl)
54	 36	 Id (hl),n
55	 37	 scf
56	 38	 jr c,d	 srl b
57	 39	 add hl,sp	 srl c
58	 3A	 la d, (nn)	 sri d

3B	 dec sp59	 sri e
60	 3C	 inca	 srl h
61	 3D	 dec a	 sri 1
62	 3E	 Id a,n	 sri (hl)
63	 3F	 ccf	 sri a
64	 40	 Id b,b	 bit O,b	 in b, (c)
65	 41	 Id b,c	 bit 0,c	 out (c),b
66	 42	 Id b,d	 bit 0,d	 sbc hl,bc
67	 43	 Id b,e	 bit 0,e	 Id (nn),bc
68	 44	 Id b,h	 bit 0,h	 neg
69	 45	 Id b,l	 bit 0,1	 rein
70	 46	 Id b, (hl)	 bit 0, (hl)	 im 0
71	 47	 Id b,a	 bit O,a	 ld i,a
72	 48	 id c,b	 bit 1,b	 in c, (c)
73	 49	 ld c,c	 bit 1,c	 out (c),c
74	 4A	 ld c,d	 bit 1,d	 adc hl,bc
75	 4B	 id c,e	 bit 1,e	 Id bc,(nn)
76	 4C	 ld c,h	 bit 1,h
77	 4D	 Id c,l	 bit 1,1	 reti
78	 4E	 Id c, (hl)	 bit 1, (hl)
79	 4F	 Id c,a	 bit 1,a	 id r,a
80	 50	 Id d,b	 bit 2,b	 in d, (c)
81	 51	 Id d,c	 bit 2,c	 out (c),d
82	 52	 Id d,d	 bit 2,d	 sbc hl,de
83	 53	 Id d,e	 bit 2,e	 Id (nn),de
84	 54	 Id d,h	 bit 2,h
85	 55	 Id d,l	 bit 2,1
86	 56	 Id d, (hl)	 bit 2, (hl)	 im 1
87	 57	 Id d,a	 bit 2,a	 Id a,i
88	 58	 Id e,b	 bit 3,b	 in e,(c)
89	 59	 Id e,c	 bit 3,c	 out (c),e
90	 5A	 Id e,d	 bit 3,d	 adc hl,de
91	 5B	 Id e,e	 bit 3,e	 ld de,(nn)
92	 5C	 Id e,h	 bit 3,h
93	 5Dld e,l	 bit 3,1
94	 5E	 Id e, (hl)bit 3, (hl)	 im 2
95	 5F	 Id e,a	 bit 3,a	 Id a,r

138	 139

96	 60	 Id h,b	 bit 4,b	 in h, (c)
97	 61	 Id h,c	 bit 4,c	 out (c),h
98	 62	 Id h,d	 bit 4,d	 sbc hl,h1
99	 63	 Id h,e	 bit 4,e	 Id (nn),hl
100	 64	 Id h,h	 bit 4,h
101	 65	 Id h,l	 bit 4,1
102	 66	 Id h, (hl)	 bit 4, (hl)
103	 67	 ld h,a	 bit 4,a	 rrd
104	 68	 Id l,b	 bit 5,b	 in 1,(c)
105	 69	 Id I,c	 bit 5,c	 out (c),1
106	 6A	 Id l,d	 bit 5,d	 adc hl,hl
107	 6B	 Id I,e	 bit 5,e	 Id hl,(nn)
108	 6C	 Id l,h	 bit 5,h
109	 6D	 Id 1,1	 bit 5,1
110	 6E	 Id 1, (hl)	 bit 5, (hl)
111	 6F	 Id 1,a	 bit 5,a	 rld
112	 70	 Id (hI),b	 bit 6,b	 in f,(c)
113	 71	 Id (hl),c	 bit 6,c
114	 72	 Id (h1),d	 bit 6,d	 sbc hl,sp
115	 73	 Id (hl),e	 bit 6,e	 Id (nn),sp
116	 74	 Id (h1),h	 bit 6,h
117	 75	 Id (h1),1	 bit 6,1
118	 76	 halt	 bit 6, (hl)
119	 77	 Id (hl),a	 bit 6,a
120	 78	 Id a,b	 bit 7,b	 in a,(c)
121	 79	 Id a,c	 bit 7,c	 out (c),a
122	 7A	 Id a,d	 bit 7,d	 adc hl,sp
123	 7B	 Id a,e	 bit 7,e	 Id sp, (nn)
124	 7C	 Id a,h	 bit 7,h
125	 7D	 Id ad	 bit 7,1
126	 7E	 Id a, (hl)	 bit 7, (hl)
127	 7F	 Id a,a	 bit 7,a
128	 80	 add a,b	 res 0,b
129	 81	 add a,c	 res 0,c
130	 82	 add a,d	 res 0,d
131	 83	 add a,e	 res 0,e
132	 84	 add a,h	 res 0,h
133	 85	 add ad	 res 0,1
134	 86	 add a, (hi)	 res 0, (hl)
135	 87	 add a,a	 res 0,a
136	 88	 adc a,b	 res 1,b
137	 89	 adc a,c	 res 1,c
138	 8A	 adc a,d	 res l,d
139	 8B	 adc a,e	 res 1,e
140	 8C	 adc a,h	 res l,h
141	 8D	 adc ad	 res 1,1
142	 8E	 adc a, (hl)	 res 1, (hl)

143	 8F	 adc a,a	 res 1,a
144	 90	 sub b	 res 2,b
145	 91	 sub c	 res 2,c
146	 92	 sub d	 res 2,d
147	 93	 sub e	 res 2,e
148	 94	 sub h	 res 2,h
149	 95	 sub 1	 res 2,1
150	 96	 sub (hl)	 res 2, (hl)
151	 97	 sub a	 res 2,a
152	 98	 sbc a,b	 res 3,b
153	 99	 sbc a,c	 res 3,c
154	 9A	 sbc a,d	 res 3,d
155	 9B	 sbc a,e	 res 3,c
156	 9C	 sbc a,h	 res 3,h
157	 9D	 sbc ad	 res 3,1
158	 9E	 sbc a, (hl)	 res 3, (hl)
159	 9F	 sbc a,a	 res 3,a
160	 AO	 and b	 res 4,b	 Idi
161	 Al	 and c	 res 4,c	 cpi
162	 A2	 and d	 res 4,d	 ini
163	 A3	 and e	 res 4,e	 outi
164	 A4	 and h	 res 4,h
165	 A5	 and 1	 res 4,1
166	 A6	 and (hl)	 res 4, (hl)
167	 A7	 and a	 res 4,a
168	 A8	 xor b	 res 5,b	 ldd
169	 A9	 xor c	 res 5,c	 cpd
170	 AA	 xor d	 res 5,d	 ind
171	 AB	 xor e	 res 5,e	 outd
172	 AC	 xor h	 res 5,h
173	 AD	 xor 1	 res 5,1
174	 AE	 xor (hl)	 res 5, (hl)
175	 AF	 xor a	 res 5,a
176	 BO	 or b	 res 6,b	 ldir
177	 B1	 or c	 res 6,c	 cpir
178	 B2	 or d	 res 6,d	 inir
179	 B3	 or e	 res 6,e	 otir
180	 B4	 or h	 res 6,h
181	 B5	 or 1	 res 6,1
182	 B6	 or (hl)	 res 6, (hl)
183	 B7	 or a	 res 6,a
184	 B8	 cp b	 res 7,b	 lddr
185	 B9	 cp c	 res 7,c	 cpdr
186	 BA	 cp d	 res 7,d	 indr
187	 BB	 cp e	 res 7,e	 otdr
188	 BC	 cp h	 res 7,h
189	 BD	 cp 1	 res 7,1

140 141

190	 BE	 cp (hl)	 res 7, (hl)
191	 BF	 cp a	 res 7,a
192	 CO	 ret nz	 set 0,b
193	 C1	 pop bc	 set O,c
194	 C2	 jp nz, nn	 set 0,d
195	 C3	 jp nn	 set 0,e
196	 C4	 call nz,nn	 set O,h
197	 C5	 push bc	 set 0,1
198	 C6	 add a,n	 set 0, (hl)
199	 C7	 rst 0	 set O,a
200	 C8	 ret z	 set 1,b
201	 C9	 ret	 set 1,c
202	 CA	 jp z,nn	 set 1,d
203	 CB	 -	 set 1,e
204	 CC	 call z,nn	 set 1,h
205	 CD	 call nn	 set 1,1
206	 CE	 adc a,n	 set 1, (hl)
207	 CF	 rst 8	 set 1,a
208	 DO	 ret ne	 set 2,b
209	 D 1	 pop de	 set 2,c
210	 D2	 jp nz,nn	 set 2,d
211	 D3	 out (n),a	 set 2,e
212	 D4	 call nz,nn	 set 2,h
213	 D5	 push de	 set 2,1
214	 D6	 sub,n	 set 2, (hl)
215	 D7	 rst 16	 set 2,a
216	 D8	 ret c	 set 3,b
217	 D9	 exx	 set 3,c
218	 DA	 jp c,nn	 set 3,d
219	 DB	 in a,(n)	 set 3,e
220	 DC	 call c,nn	 set 3,h
221	 DD	 set 3,1
222	 DE	 sbc a,n	 set 3, (hl)
223	 DF	 rst 24	 set 3,a
224	 EO	 ret po	 set 4,b
225	 E1	 pop hl	 set 4,c
226	 E2	 jp po,nn	 set 4,d
227	 E3	 ex (sp),hl	 set 4,e
228	 E4	 call po,nn	 set 4,h
229	 E5	 push hl	 set 4,1
230	 E6	 and n	 set 4, (hl)
231	 E7	 rst 32	 set 4,a
232	 E8	 ret pe	 set 5,b
233	 E9	 jp (hi)	 set 5,c
234	 EA	 jp pe,nn	 set 5,d
235	 EB	 ex de,hl	 set 5,e
236	 EC	 call pe,nn	 set 5,h

237	 ED	 -	 set 5,1
238	 EE	 xor n	 set 5, (hl)
239	 EF	 rst 40	 set 5,a
240	 FO	 ret p	 set 6,b
241	 F1	 pop of	 set 6,c
242	 F2	 jp p,nn	 set 6,d
243	 F3	 di	 set 6,e
244	 F4	 call p,nn	 set 6,h
245	 F5	 push of	 set 6,1
246	 F6	 or n	 set 6, (hl)
247	 F7	 rst 48	 set 6,a
248	 F8	 ret m	 set 7,b
249	 F9	 Id sp,hl	 set 7,c
250	 FA	 jp m,nn	 set 7,d
251	 FB	 ei	 set 7,e
252	 FC	 call m,nn	 set 7,h
253	 FD	 -	 set 7,1
254	 FE	 cp n	 set 7, (hl)
255	 FF	 rst 56	 set 7,a

Table A3 Index register codes. Columns 3 and 5 refer to the ix register. Columns 4

and 6 refer to the iy register. All the instructions in this table mimic the instructions
for the hl register pair in table A2.

Decimal Hex After 221	 After 253	 After 221, 203 After 253, 203

(hex DD)	 (hex FD)	 (hex DD, CB) (hex FD, CB)

rlc (ix + d)	 tic (iy + d)
add ix, be	 add iy,bc

rrc (ix + d)	 rrc (iy + d)
rl (ix + d)	 rl (iy + d)

add ix,de	 add iy,de
rr (ix + d)	 rr (iy + d)

ld ix,nn	 ld iy,nn
Id (nn),ix	 Id (nn),iy
inc ix	 inc iy

sla (ix + d)	 sla (iy + d)
add ix,ix	 add iy,iy
Id ix,(nn)	 Id iy,(nn)
dec ix	 dec iy

sra (ix + d)	 sra (iy + d)
inc (ix + d)	 inc (iy + d)
dec (ix + d)	 dec (iy + d)
Id (ix + d),n	 Id (iy + d),n
add ix,sp	 add iy,sp

srl (ix + d)	 srl (iy + d)
Id b, (ix + d)	 1d b, (iy + d)	 bit 0,(ix + d)	 bit 0,(iy + d)

ld c,(ix+d)	 Id c,(iy+d)	 bit 1,(ix+d)	 bit 1,(iy+d)

6 06
9 09
14 OE
22 16
25 19
30 IE
33 21
34 22
35 23
38 26
41 29
42 2A
43 2B
46 2E
52 34
53 35
54 36
57 39
62 3E
70 46
78 4E

142	 143

86	 56	 Id d,(ix +d) 	 Id d,(iy +d)
94	 5E Id e,(ix + d)	 Id e,(iy + d)
102	 66	 Id h,(ix +d) 	 Id h,(iy +d)
110	 6E	 Id I,(ix +d) 	 Id l,(iy +d)
112	 70	 Id (ix +d),b	 Id (iy+d),b
113	 71	 Id (ix + d),c	 Id (iy + d),c
114	 72	 Id (ix +d),d	 Id (iy+d),d
115	 73	 Id (ix + d),e	 Id (iy + d),e
116	 74	 Id (ix +d),h	 Id (iy+d),h
117	 75	 Id (ix + d),1	 ld (iy + d), 1
118	 76
119	 77	 Id (ix +d),a	 Id (iy+d),a
126	 7E Id a,(ix +d)]d a,(iy +d)
134	 86 add a,(ix + d) add a,(iy + d)
142	 8E adc a,(ix + d) adc a,(iy + d)
150	 96	 sub (ix + d)	 sub (iy + d)
158	 9E sbca,(ix +d) sbca,(iy +d)
166	 A6 and (ix + d)	 and (iy + d)
174	 AE xor (ix + d)	 xor (iy + d)
182	 B6 or (ix + d)	 or (iy + d)
190	 BE cp (ix + d)	 cp (iy + d)
198	 C6
206	 CE
214	 D6
222	 DE
225	 El pop ix	 pop iy
227	 E3 ex (sp),ix	 ex (sp),iy
229	 E5 push ix	 push iy
230	 E6
233	 E9 jp ix	 jp iy

238	 EE
246	 F6
249	 F9 Id sp,ix	 Id sp,iy
254	 FE

bit 2,(ix + d)
bit 3,(ix+d)
bit 4,(ix+d)
bit 5,(ix+d)

bit 7, (ix + d)
res 0,(ix + d)
res 1,(ix+d)
res 2,(ix +d)
res 3, (ix + d)
res 4,(ix+d)
res 5,(ix+d)
res 6,(ix +d)
res 7, (ix + d)
set 0,(ix + d)
set 1,(ix+d)
set 2,(ix + d)
set 3,(ix + d)

set 4,(ix+d)

set 5,(ix+d)
set 6,(ix + d)

set 7,(ix + d)

bit 2,(iy + d)
bit 3,(iy + d)
bit 4,(iy + d)
bit 5,(iy + d)

bit 7,(iy + d)
res 0,(iy + d)
res 1,(iy+d)
res 2,(iy + d)
res 3,(iy + d)
res 4,(iy + d)
res 5,(iy + d)
res 6,(iy + d)
res 7, (iy + d)
set 0,(iy + d)
set 1,(iy+d)
set 2,(iy + d)
set 3,(iy+d)

set 4,(iy + d)

set 5,(iy+d)
set 6,(iy+d)

set 7,(iy+d)

bit 6, (ix + d) bit 6, (iy + d)

144

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77

